Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Genet Eng Biotechnol ; 19(1): 171, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750689

RESUMO

BACKGROUND: Biotechnological breeding of elite sugarcane cultivars is currently limited because of the difficulty of regenerating plants by tissue culture. Here, we report that commercially elite sugarcane genotypes, which are adapted to Argentinian agro-ecological conditions, are capable of being regenerated via indirect somatic embryogenesis. Leaf rolls of five elite genotypes were cultured following two callus induction protocols using different concentrations of 2,4-D as the growth regulator. Embryogenic calluses were regenerated under light conditions. Regenerated plants were subsequently acclimatized in the greenhouse under two acclimatization procedures before being transplanted to the field. RESULTS: Four of the five genotypes were able to form somatic embryos following the two induction protocols. The variables related to embryogenic callus production were influenced by the interaction between genotype and culture conditions. For plant regeneration, the embryogenic calluses were further cultured on an IBA-supplemented medium, where we observed a high genotype dependence. Calluses from the four cultivars regenerated a good number of plants. With the procedures described here, we obtained more than 90% of well-acclimatized plants both in the greenhouse and in the field. CONCLUSIONS: This protocol provides a simple way to regenerate sugarcane plants through indirect somatic embryogenesis. Also, the results confirm that tissue culture ability is highly genotype-dependent in sugarcane. Our findings suggest that these elite cultivars could be good candidates for biotechnological breeding.

2.
Phytopathology ; 109(3): 358-365, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30226422

RESUMO

Acidovorax spp. cause a wide range of economically important diseases in monocotyledonous and dicotyledonous plants, including sugarcane, corn, rice, oat, millet, foxtail watermelon, and orchid. In Argentina, the red stripe disease of sugarcane caused by Acidovorax avenae affects 30% of the milling stems with important economic losses. To explore the genetic diversity of this bacterium associated with red stripe in Argentina, multilocus sequence typing (MLST) was applied. This study included 15 local strains isolated from four different sugarcane planting regions and selected after random amplified polymorphic DNA analysis and reference strains of A. citrulli, A. avenae, and A. oryzae to investigate their phylogenetic relationships. MLST analysis resulted in five sequence types among the sugarcane A. avenae strains which constitute a clonal complex, meaning a common and close origin. Sugarcane strains were related to A. avenae from other hosts and distant to A. citrulli. Signals of frequent recombination in several lineages of A. avenae was detected and we observed that A. oryzae is closely related to A. avenae strains. This study provides valuable data in the field of epidemiological and evolutionary investigations of novel clone of A. avenae strains causing sugarcane red stripe. The knowledge of the genetic diversity and strain-host specificity are important to select the genotypes with the best response to the red stripe disease.


Assuntos
Comamonadaceae , Doenças das Plantas/microbiologia , Saccharum , Argentina , Tipagem de Sequências Multilocus , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...