Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Eur J Med Chem ; 211: 113017, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33223263

RESUMO

Multidrug resistance membrane pumps reduce the efficacy of chemotherapies by exporting a wide panel of structurally-divergent drugs. Here, to take advantage of the polyspecificity of the human Breast Cancer Resistance Protein (BCRP/ABCG2) and the dimeric nature of this pump, new dimeric indenoindole-based inhibitors from the monomeric α,ß-unsaturated ketone 4b and phenolic derivative 5a were designed. A library of 18 homo/hetero-dimers was synthesised. Homo-dimerization shifted the inhibition efficacy from sub-micromolar to nanomolar range, correlated with the presence of 5a, linked by a 2-6 methylene-long linker. Non-toxic, the best dimers displayed a therapeutic ratio as high as 70,000. It has been found that the high potency of the best compound 7b that displays a KI of 17 nM is due to an uncompetitive behavior toward mitoxantrone efflux and specific for that drug, compared to Hoechst 33342 efflux. Such property may be useful to target such anticancer drug efflux mediated by ABCG2. Finally, at a molecular level, an uncompetitive mechanism by which substrate promotes inhibitor binding implies that at least 2 ligands should bind simultaneously to the drug-binding pocket of ABCG2.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Indóis/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Indóis/síntese química , Indóis/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Relação Estrutura-Atividade
2.
Molecules ; 25(3)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050702

RESUMO

The resistance of tumors against anticancer drugs is a major impediment for chemotherapy. Tumors often develop multidrug resistance as a result of the cellular efflux of chemotherapeutic agents by ABC transporters such as P-glycoprotein (ABCB1/P-gp), Multidrug Resistance Protein 1 (ABCC1/MRP1), or Breast Cancer Resistance Protein (ABCG2/BCRP). By screening a chemolibrary comprising 140 compounds, we identified a set of naturally occurring aurones inducing higher cytotoxicity against P-gp-overexpressing multidrug-resistant (MDR) cells versus sensitive (parental, non-P-gp-overexpressing) cells. Follow-up studies conducted with the P-gp inhibitor tariquidar indicated that the MDR-selective toxicity of azaaurones is not mediated by P-gp. Azaaurone analogs possessing pronounced effects were then designed and synthesized. The knowledge gained from structure-activity relationships will pave the way for the design of a new class of anticancer drugs selectively targeting multidrug-resistant cancer cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Benzofuranos/química , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Cães , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células Madin Darby de Rim Canino , Espectroscopia de Ressonância Magnética , Relação Estrutura-Atividade
3.
RSC Adv ; 10(5): 2915-2931, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35496110

RESUMO

Two series of piperazinyl-pyrrolo[1,2-a]quinoxaline derivatives were prepared via a Buchwald-Hartwig cross-coupling reaction and then evaluated for their ability to inhibit the drug efflux activity of CaCdr1p and CaMdr1p transporters of Candida albicans overexpressed in a Saccharomyces cerevisiae strain. In the initial screening of twenty-nine piperazinyl-pyrrolo[1,2-a]quinoxaline derivatives, twenty-three compounds behaved as dual inhibitors of CaCdr1p and CaMdr1p. Only four compounds showed exclusive inhibition of CaCdr1p or CaMdr1p. Further biological investigations were developed and for example, their antifungal potential was evaluated by measuring the growth of control yeast cells (AD1-8u-) and efflux pump-overexpressing cells (AD-CDR1 and AD-MDR1) after exposition to variable concentrations of the tested compounds. The MIC80 values of nineteen compounds ranging from 100 to 901 µM for AD-CDR1 demonstrated that relative resistance index (RI) values were between 8 and 274. In comparison, only seven compounds had RI values superior to 4 in cells overexpressing Mdr1p. These results indicated substrate behavior for nineteen compounds for CaCdr1p and seven compounds for CaMdr1p, as these compounds were transported via MDR transporter overexpressing cells and not by the AD1-8u- cells. Finally, in a combination assay with fluconazole, two compounds (1d and 1f) have shown a synergistic effect (fractional inhibitory concentration index (FICI) values ≤ 0.5) at micromolar concentrations in the AD-MDR1 yeast strain overexpressing CaMdr1p-protein, indicating an excellent potency toward chemosensitization.

4.
Nutrients ; 11(9)2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487863

RESUMO

Resveratrol has been proposed to prevent tumor growth and the different steps of carcinogenesis; nevertheless, these biological effects are sometimes discordant between different cell types. Several hypotheses and works have suggested that the metabolism of resveratrol could be at the origin of a different cellular response. We show here, using colorectal tumor cell lines, that the biological effects of RSV result mainly from its carriage by carriers of the superfamily of ABC transporter, i.e., P-gP, MRP, or BCRP. Using cell lines overexpressing these different transporters, we have been able to highlight the importance of P-gP in the response of cells to RSV. These results were confirmed by invalidating the gene coding for P-gP, which restored the sensitivity of colorectal cells resistant to the polyphenol. Subsequently, the status of P-glycoprotein expression is an important element to be taken into consideration in the cytotoxic activity of resveratrol in colorectal cancer cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Resveratrol/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Resveratrol/metabolismo
5.
Eur J Med Chem ; 148: 165-177, 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29459276

RESUMO

A new series of amphiphilic η6-areneruthenium(II) compounds containing phenylazo ligands (group I: compounds 1a, 1b, 2a and 2b) and phenyloxadiazole ligands (group II: compounds 3a, 3b, 4a and 4b) were synthesized and characterized for their anti-glioblastoma activity. The effects of the amphiphilic η6-areneruthenium(II) complexes on the viability of three human glioblastoma cell lines, U251, U87MG and T98G, were evaluated. The azo-derivative ruthenium complexes (group I) showed high cytotoxicity to all cell lines, whilst most oxadiazole-derivative complexes (group II) were less cytotoxic, except for compound 4a. The cationic complexes 2a, 2b and 4b were more cytotoxic than the neutral complexes. Compounds 2a and 2b caused a significant reduction in the percentage of cells in the G0/G1 phase, with concomitant increases in the G2/M phase and fragmented DNA in the T98G cell line. The η6-areneruthenium(II) compounds were also tested in cell lines that overexpress the multidrug ABC transporters P-gp, MRP1 and ABCG2. Compounds 2b and 4a were substrates for the P-gp protein, with resistance indexes of 8.6 and 1.9, respectively. Compound 2b was also a substrate for ABCG2 and MRP1 proteins, with lower resistance indexes (1.8 and 1.6, respectively). The contribution of multidrug ABC transporters to the cytotoxicity of compound 2b in T98G cells was evidenced, since verapamil (a characteristic inhibitor of MRP1) increased the cytotoxicity of compound 2b at concentrations up to 20 µmol L-1, whilst GF120918 and Ko143 (specific inhibitors of P-gp and ABCG2, respectively) had no significant effect. In addition, we showed that compound 2b interacts with glutathione (GSH), which could explain its cellular efflux by MRP1. Our results showed that the amphiphilic η6-areneruthenium(II) complexes are promising anti-glioblastoma compounds, especially compound 2b, which was cytotoxic for all three cell lines, although it is transported by the three main multidrug ABC transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistência a Múltiplos Medicamentos , Glioblastoma/tratamento farmacológico , Rutênio/farmacologia , Compostos Azo , Transporte Biológico , Linhagem Celular Tumoral , Glioblastoma/patologia , Humanos , Ligantes , Compostos Organometálicos/farmacologia , Oxidiazóis
6.
Bioorg Med Chem ; 25(13): 3278-3284, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28479022

RESUMO

Macrocyclic diterpenes were previously found to be able to modulate the efflux pump activity of Candida albicans multidrug transporters. Most of these compounds were jatrophanes, but only a few number of lathyrane-type diterpenes was evaluated. Therefore, the aim of this study was to evaluate the ability of nineteen structurally-related lathyrane diterpenes (1-19) to overcome the drug-efflux activity of Cdr1p and Mdr1p transporters of C. albicans, and get some insights on their structure-activity relationships. The transport assay was performed by monitoring Nile Red (NR) efflux in a Saccharomyces cerevisiae strain overexpressing the referred efflux pumps from C. albicans. Moreover, a chemosensitization assay was performed in order to evaluate the type of interaction between the inhibitory compounds and the antifungal drug fluconazole. Compounds 1-13 were previously isolated from Euphorbia boetica or obtained by derivatization, and compounds 14-19 were prepared by chemical transformations of compound 4. In the transport assays, compounds 14-19 revealed the strongest inhibitory activity of the Cdr1p efflux pump, ranging from 65 to 85%. Concerning Mdr1p efflux pump, the most active compounds were 1, 3, 6, 8, and 12 (75-85%). When used in combination with fluconazole, epoxyboetirane K (2) and euphoboetirane N (18) revealed synergistic effects in the AD-CDR1 yeast strain, overexpressing the Cdr1p transporter, through their ability to reduce the effective concentration of the antifungal drug by 23- and 52-fold, respectively.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Diterpenos/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Antifúngicos/síntese química , Antifúngicos/química , Transporte Biológico/efeitos dos fármacos , Candida albicans/metabolismo , Diterpenos/síntese química , Diterpenos/química , Relação Dose-Resposta a Droga , Proteínas Fúngicas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo
7.
Eur J Med Chem ; 130: 346-353, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28273561

RESUMO

With the aim to develop anticancer agents acting selectively against resistant tumor cells, we investigated ferrocene embedded into chalcone, aurone and flavone skeletons. These compounds were conceived and then investigated based on the concept of collateral sensitivity, where the target is the Achilles Heel of cancer cells overexpressing the multidrug ABC transporter MRP1. The 14 synthesized compounds were evaluated for their ability to induce efflux of glutathione (GSH) from tumor cells overexpressing MRP1. When tested at 5 and 20 µM, at least one compound from each series was found to be a highly inducer of GSH efflux. The different compounds inducing a high efflux of GSH were evaluated on both sensitive and resistant cell lines, and two of them, belonging to the flavones class were found to be more cytotoxic on resistant cancer cells, with the best selectivity ratio >9.1. Our results bring chemical and biological bases for further optimization.


Assuntos
Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Compostos Ferrosos/química , Flavonoides/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Citotoxinas/química , Citotoxinas/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavonoides/química , Glutationa/metabolismo , Humanos , Metalocenos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/biossíntese , Sensibilidade e Especificidade
8.
Biopharm Drug Dispos ; 38(5): 351-362, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28207160

RESUMO

PURPOSE: The chromone derivative MBL-II-141, specifically designed to inhibit ABCG2, was previously demonstrated to combine strong inhibition potency, low toxicity and good efficiency in reversing resistance to irinotecan in a xenografted mouse model. Here, the pharmacokinetic interactions in mice between irinotecan, its active metabolite SN-38 and MBL-II-141 were characterized quantitatively in the blood and in the brain. METHODS: Compartmental models were used to fit the data. Goodness-of-fit was assessed by simulation-based diagnostic tools. RESULTS: Irinotecan increased the MBL-II-141 apparent clearance and Vss 1.5-fold, probably by increasing the MBL-II-141 unbound fraction. MBL-II-141 decreased the total apparent clearance of irinotecan by 23%, by decreasing its biliary clearance. MBL-II-141 increased 3-fold the brain accumulation of irinotecan, as a result of the rise of systemic exposure combined with the inhibition of ABCG2-mediated efflux at the blood-brain barrier. Finally, SN-38 exposure was increased by 1.16-fold under treatment with MBL-II-141, owing to the higher irinotecan exposure with increased metabolism towards the formation of SN-38. CONCLUSIONS: These results may help to anticipate the pharmacokinetic interactions between MBL-II-141 and other ABCG2 substrates. The irinotecan-MBL-II-141 interaction is also expected to occur in humans. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos Fitogênicos/farmacocinética , Camptotecina/análogos & derivados , Cromonas/farmacocinética , Indóis/farmacocinética , Animais , Antineoplásicos Fitogênicos/sangue , Encéfalo/metabolismo , Camptotecina/sangue , Camptotecina/farmacocinética , Cromonas/sangue , Interações Medicamentosas , Feminino , Indóis/sangue , Irinotecano , Camundongos SCID , Modelos Biológicos
9.
J Nat Prod ; 80(2): 479-487, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28106996

RESUMO

Twenty-nine jatrophane esters (1-10, 12-30) and one lathyrane (11) diterpenoid ester isolated from Euphorbia species were evaluated for their capacity to inhibit drug-efflux activities of the primary ABC transporter CaCdr1p and the secondary MFS transporter CaMdr1p of Candida albicans, in yeast strains overexpressing the corresponding transporter. These diterpenoid esters were obtained from Euphorbia semiperfoliata (1-10), E. insularis (11), and E. dendroides (12-30) and included five new compounds, euphodendroidins P-T (26-30). The jatrophane esters 12 and 23 were found to inhibit the efflux of Nile Red (NR) mediated by the two multidrug transporters, at 85-64% for CaCdr1p and 79-65% for CaMdr1p. In contrast, compound 21 was selective for CaCdr1p and induced a strong inhibition (92%), whereas compound 8 was selective for CaMdr1p, with a 74% inhibition. It was demonstrated further that potency and selectivity are sensitive to the substitution pattern on the jatrophane skeleton. However, these compounds were not transported and showed no synergism with fluconazole cytotoxicity.


Assuntos
Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Candida albicans/metabolismo , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Euphorbia/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antifúngicos/química , Transporte Biológico/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Diterpenos/química , Ésteres , Fluconazol/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular
10.
Biochem Pharmacol ; 124: 10-18, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984000

RESUMO

MRP1 overexpression in multidrug-resistant cancer cells has been shown to be responsible for collateral sensitivity to some flavonoids that stimulate a huge MRP1-mediated GSH efflux. This massive GSH depletion triggers the death of these cancer cells. We describe here that bivalent flavonoid dimers strikingly stimulate such MRP1-mediated GSH efflux and trigger a 50-100 fold more potent cell death than their corresponding monomers. This selective and massive cell death of MRP1-overexpressing cells (both transfected and drug-selected cell lines) is no longer observed either upon catalytic inactivation of MRP1 or its knockdown by siRNA. The best flavonoid dimer, 4e, kills MRP1-overexpressing cells with a selective ratio higher than 1000 compared to control cells and an EC50 value of 0.1 µM, so far unequaled as a collateral sensitivity agent targeting ABC transporters. This result portends the flavonoid dimer 4e as a very promising compound to appraise in vivo the therapeutic potential of collateral sensitivity for eradication of MRP1-overexpressing chemoresistant cancer cells in tumors.


Assuntos
Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Flavonoides/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Animais , Linhagem Celular Tumoral , Dimerização , Glutationa/metabolismo , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética
11.
Curr Med Chem ; 24(12): 1186-1213, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27855620

RESUMO

Cancer cells are permanently being selected for survival and proliferation. During this process, tumor cells often co-opt basic physiological mechanisms to protect themselves from toxic chemotherapy. One of these mechanisms is the overexpression of ATP-binding cassette (ABC) drug efflux pumps leading to multidrug resistance (MDR) of cancer cells through an increase of drug efflux. In the past 20 years, many efforts were done to circumvent MDR through the inhibition of ABC transporters. A number of inhibitors of these transporters were found but are rarely specific or rationally developed. Beside this approach, a new therapeutic strategy towards eradicating drug resistant tumor cells has recently emerged from the observation that cancer cells expressing a high level of these pumps show an unexpected hypersensitivity, called collateral sensitivity (CS) to a selected subset of chemical compounds. In this review, we target the multidrug resistance protein 1 (MRP1) and after a non-exhaustively highlighting of some of the most exemplary inhibitors of MRP1 and modulators of its expression, we focus on CS agents specifically targeting MRP1 which becomes, when overexpressed, the so called "Achilles' heel" of multidrug resistant cancer cells. We discuss the link between the prominent role of glutathione translocation and related redox balance of the cell and the CS induced by certain types of compounds. The latter are discussed according to their chemical class, and perspectives in their development for successful eradication of resistant cancer are proposed.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glutationa/deficiência , Glutationa/metabolismo , Neoplasias/tratamento farmacológico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/química , Humanos , Estrutura Molecular , Neoplasias/metabolismo , Neoplasias/patologia
12.
Chem Biol Interact ; 256: 154-60, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27417255

RESUMO

Toxicity of the SYD-1 mesoionic compound (3-[4-chloro-3-nitrophenyl]-1,2,3-oxadiazolium-5-olate) was evaluated on human liver cancer cells (HepG2) grown in either high glucose (HG) or galactose (GAL) medium, and also on suspended cells kept in HG medium. SYD-1 was able to decrease the viability of cultured HepG2 cells in a dose-dependent manner, as assessed by MTT, LDH release and dye with crystal violet assays, but no effect was observed on suspended cells after 1-40 min of treatment. Respiration analysis was performed after 2 min (suspended cells) or 24 h (cultured cells) of treatment: no change was observed in suspended cells, whereas SYD-1 inhibited as well basal, leak and uncoupled states of the respiration in cultured cells with HG medium. These inhibitions were consistent with the decrease in pyruvate level and increase in lactate level. Even more extended results were obtained with HepG2 cells grown in GAL medium where, additionally, the ATP amount was reduced. Furthermore, SYD-1 appears not to be transported by the main ABC multidrug transporters. These results show that SYD-1 is able to change the metabolism of HepG2 cells, and suggest that its cytotoxicity is related to impairment of mitochondrial metabolism. Therefore, we may propose that SYD-1 is a potential candidate for hepatocarcinoma treatment.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Hepatócitos/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Oxidiazóis/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Carcinoma Hepatocelular/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Ácido Láctico/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Ácido Pirúvico/metabolismo
13.
Eur J Med Chem ; 122: 291-301, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27376492

RESUMO

Breast cancer resistance protein (BCRP/ABCG2) is one of the major transporters involved in the efflux of anticancer compounds, contributing to multidrug resistance (MDR). Inhibition of ABCG2-mediated transport is then considered a promising strategy for overcoming MDR in tumors. We recently identified a chromone derivative, namely MBL-II-141 as a selective ABCG2 inhibitor, with relevant in vivo activity. Here, we report the pharmacomodulation of MBL-II-141, with the aim of identifying key pharmacophoric elements to design more potent selective and non-toxic inhibitors. Through rational structural modifications of MBL-II-141, using simple and affordable chemistry, we obtained highly active and easily-made inhibitors of ABCG2. Among the investigated compounds, derivative 4a, was found to be 3-fold more potent than MBL-II-141. It was similarly efficient as the reference inhibitor Ko143 but with the advantage of a lower intrinsic cytotoxicity, and therefore constitutes the best ABCG2 inhibitor ever reported displaying a very high therapeutic ratio.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Neoplasias da Mama , Cromonas/química , Cromonas/farmacologia , Desenho de Fármacos , Cromonas/síntese química , Células HEK293 , Humanos , Relação Estrutura-Atividade
14.
Planta Med ; 82(13): 1180-5, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27145238

RESUMO

Thirteen macrocyclic diterpenes (1-13) of the jatrophane and lathyrane types, either isolated from Euphorbia species or obtained by chemical derivatization, were evaluated for their ability to inhibit the drug efflux activity of Candida albicans CaCdr1p and CaMdr1p multidrug transporters overexpressed in a Saccharomyces cerevisiae strain. Their inhibitory potential was assessed through a functional assay of Nile Red accumulation monitored by flow cytometry. A chemosensitization assay, using the checkerboard method, was also performed with the active compounds in order to evaluate their type of interaction with fluconazole.In the transport assay, most compounds were found to inhibit both transporters, most likely as non-substrates, as shown by relative resistance indices close to unity. In contrast, the jatrophanes euphopubescenol (10) and euphomelliferene A (11) were selective for CaMdr1p and CaCdr1p, respectively. Moreover, when used in combination with fluconazole, compounds 12 and 13 displayed strong synergistic interactions (FICI = 0.071) against the yeast strain overexpressing CaMdr1p, decreasing the MIC80 of the antifungal agent 13-fold. Both compounds were also able to reduce the effective concentration of this antifungal agent by 4- to 8-fold against an azole-resistant clinical isolate of C. albicans (F5).


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Diterpenos/farmacologia , Farmacorresistência Fúngica Múltipla , Euphorbia/química , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antifúngicos/isolamento & purificação , Diterpenos/isolamento & purificação , Testes de Sensibilidade Microbiana
15.
Hum Gene Ther ; 27(2): 166-83, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26886833

RESUMO

Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in a deficiency in chloride channel activity. In this study, extracellular vesicles (EVs), microvesicles, and exosomes were used as vehicles to deliver exogenous CFTR glycoprotein and its encoding mRNA (mRNA(GFP-CFTR)) to CF cells to correct the CFTR chloride channel function. We isolated microvesicles and exosomes from the culture medium of CFTR-positive Calu-3 cells, or from A549 cells transduced with an adenoviral vector overexpressing a GFP-tagged CFTR (GFP-CFTR). Both microvesicles and exosomes had the capacity to package and deliver the GFP-CFTR glycoprotein and mRNA(GFP-CFTR) to target cells in a dose-dependent manner. Homologous versus heterologous EV-to-cell transfer was studied, and it appeared that the cellular uptake of EVs was significantly more efficient in homologous transfer. The incubation of CF15 cells, a nasal epithelial cell line homozygous for the ΔF508 CFTR mutation, with microvesicles or exosomes loaded with GFP-CFTR resulted in the correction of the CFTR function in CF cells in a dose-dependent manner. A time-course analysis of EV-transduced CF cells suggested that CFTR transferred as mature glycoprotein was responsible for the CFTR-associated channel activity detected at early times posttransduction, whereas GFP-CFTR translated from exogenous mRNA(GFP-CFTR) was responsible for the CFTR function at later times. Collectively, this study showed the potential application of microvesicles and exosomes as vectors for CFTR transfer and functional correction of the genetic defect in human CF cells.


Assuntos
Micropartículas Derivadas de Células/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Vesículas Extracelulares/química , Terapia Genética/métodos , RNA Mensageiro/genética , Transdução Genética/métodos , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Linhagem Celular Tumoral , Micropartículas Derivadas de Células/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/patologia , Exossomos/química , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia
16.
Mol Cell Biochem ; 409(1-2): 123-33, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26209062

RESUMO

Hepatocellular carcinoma is the third most common cause of cancer-related deaths worldwide. Furthermore, the existing pharmacological-based treatments are insufficiently effective and generate many side effects. Hispidulin (6-methoxy-5,7,4'-trihydroxyflavone) is a flavonoid found in various medicinal herbs that present antineoplastic properties. Here we evaluated how modulation of reactive oxygen species (ROS) and alterations of antioxidant defenses could be associated to the antiproliferative effects of hispidulin in HepG2 cells. In addition, we studied the inhibitory activity of hispidulin on the efflux of drugs mediated by ABC transporters involved in multidrug resistance. In order to understand the increase of intracellular ROS promoted by hispidulin, we investigated the mRNA expression levels and activities of antioxidant enzymes, and the GSH/GSSG ratio. We showed that hispidulin significantly down-regulated the transcription levels of catalase, leading to reduction of enzyme activity and decrease of the GSH content. We also observed that, in the presence of N-acetylcysteine or exogenous catalase, the proliferation was lowered back to the control levels. These data clearly indicate a strong involvement of intracellular ROS levels for triggering the antiproliferative effects. We also demonstrated that the inhibition produced by hispidulin on drug efflux was specific for ABCG2, since no effects were observed with ABCB1 and ABCC1. Furthermore, HepG2 cells were more sensitive to hispidulin-mediated cell death than immortalized L929 fibroblasts, suggesting a differential toxicity of this compound between tumor and non-tumor cell lines. Our results suggest that hispidulin constitutes a promising candidate to sensitize chemoresistant cancer cells overexpressing ABCG2.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antioxidantes/farmacologia , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Flavonas/farmacologia , Neoplasias Hepáticas/patologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Apoptose/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Catalase/biossíntese , Catalase/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glutationa/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Células L , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Mitoxantrona/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/biossíntese , Plantas Medicinais/metabolismo , RNA Mensageiro/biossíntese , Espécies Reativas de Oxigênio/metabolismo
17.
Drug Des Devel Ther ; 9: 3481-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26170632

RESUMO

Ketonic indeno[1,2-b]indole-9,10-dione derivatives, initially designed as human casein kinase II (CK2) inhibitors, were recently shown to be converted into efficient inhibitors of drug efflux by the breast cancer resistance protein ABCG2 upon suited substitutions including a N (5)-phenethyl on C-ring and hydrophobic groups on D-ring. A series of ten phenolic and seven p-quinonic derivatives were synthesized and screened for inhibition of both CK2 and ABCG2 activities. The best phenolic inhibitors were about threefold more potent against ABCG2 than the corresponding ketonic derivatives, and showed low cytotoxicity. They were selective for ABCG2 over both P-glycoprotein and MRP1 (multidrug resistance protein 1), whereas the ketonic derivatives also interacted with MRP1, and they additionally displayed a lower interaction with CK2. Quite interestingly, they strongly stimulated ABCG2 ATPase activity, in contrast to ketonic derivatives, suggesting distinct binding sites. In contrast, the p-quinonic indenoindoles were cytotoxic and poor ABCG2 inhibitors, whereas a partial inhibition recovery could be reached upon hydrophobic substitutions on D-ring, similarly to the ketonic derivatives.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Desenho de Fármacos , Indenos/farmacologia , Indóis/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Fenóis/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Sítios de Ligação , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Indenos/síntese química , Indenos/metabolismo , Indóis/síntese química , Indóis/metabolismo , Camundongos , Mitoxantrona/metabolismo , Modelos Moleculares , Estrutura Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Células NIH 3T3 , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Fenóis/síntese química , Fenóis/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Transfecção
18.
PLoS One ; 10(6): e0130046, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26083249

RESUMO

In this work, we evaluated the cytotoxicity of mesoionic 4-phenyl-5-(2-Y, 4-X or 4-X-cinnamoyl)-1,3,4-thiadiazolium-2-phenylamine chloride derivatives (MI-J: X=OH, Y=H; MI-D: X=NO2, Y=H; MI-4F: X=F, Y=H; MI-2,4diF: X=Y=F) on human hepatocellular carcinoma (HepG2), and non-tumor cells (rat hepatocytes) for comparison. MI-J, M-4F and MI-2,4diF reduced HepG2 viability by ~ 50% at 25 µM after 24-h treatment, whereas MI-D required a 50 µM concentration, as shown by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. The cytotoxicity was confirmed with lactate dehydrogenase assay, of which activity was increased by 55, 24 and 16% for MI-J, MI-4F and MI-2,4diF respectively (at 25 µM after 24 h). To identify the death pathway related to cytotoxicity, the HepG2 cells treated by mesoionic compounds were labeled with both annexin V and PI, and analyzed by flow cytometry. All compounds increased the number of doubly-stained cells at 25 µM after 24 h: by 76% for MI-J, 25% for MI-4F and MI-2,4diF, and 11% for MI-D. It was also verified that increased DNA fragmentation occurred upon MI-J, MI-4F and MI-2,4diF treatments (by 12%, 9% and 8%, respectively, at 25 µM after 24 h). These compounds were only weakly, or not at all, transported by the main multidrug transporters, P-glycoprotein, ABCG2 and MRP1, and were able to slightly inhibit their drug-transport activity. It may be concluded that 1,3,4-thiadiazolium compounds, especially the hydroxy derivative MI-J, constitute promising candidates for future investigations on in-vivo treatment of hepatocellular carcinoma.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Tiadiazóis/química , Tiadiazóis/farmacologia , Animais , Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos , Masculino , Ratos , Ratos Wistar , Tiadiazóis/efeitos adversos
19.
Anticancer Agents Med Chem ; 15(5): 592-604, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25553434

RESUMO

Chalcones are natural compounds found in plants, fruits and vegetables. This class of compounds has shown many biological activities including antioxidant, antimicrobial, anti-inflammatory, antifungal and antihypertensive, among others. In cancer, it has been reported that chalcones interfere in several points of the signal transduction pathways related to cellular proliferation, angiogenesis, metastasis, apoptosis and the reversal of multidrug resistance. The large number of research articles and patents related to chalcones is already an indication of their importance as a lead class of compounds. This article gathers recent efforts to elucidate the molecular mechanisms of action of chalcones, associated with their anticancer and anti resistance potential.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Chalconas/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/química , Proliferação de Células/efeitos dos fármacos , Chalconas/química , Humanos , Estrutura Molecular , Neoplasias/patologia
20.
J Med Chem ; 58(1): 265-77, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25272055

RESUMO

A series of indeno[1,2-b]indole-9,10-dione derivatives were synthesized as human casein kinase II (CK2) inhibitors. The most potent inhibitors contained a N(5)-isopropyl substituent on the C-ring. The same series of compounds was found to also inhibit the breast cancer resistance protein ABCG2 but with totally different structure-activity relationships: a N(5)-phenethyl substituent was critical, and additional hydrophobic substituents at position 7 or 8 of the D-ring or a methoxy at phenethyl position ortho or meta also contributed to inhibition. The best ABCG2 inhibitors, such as 4c, 4h, 4i, 4j, and 4k, behaved as very weak inhibitors of CK2, whereas the most potent CK2 inhibitors, such as 4a, 4p, and 4e, displayed limited interaction with ABCG2. It was therefore possible to convert, through suitable substitutions of the indeno[1,2-b]indole-9,10-dione scaffold, potent CK2 inhibitors into selective ABCG2 inhibitors and vice versa. In addition, some of the best ABCG2 inhibitors, which displayed a very low cytotoxicity, thus giving a high therapeutic ratio, and appeared not to be transported, constitute promising candidates for further investigations.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Caseína Quinase II/antagonistas & inibidores , Indóis/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caseína Quinase II/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Indóis/síntese química , Indóis/química , Células MCF-7 , Mitoxantrona/metabolismo , Modelos Químicos , Estrutura Molecular , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...