Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Malar J ; 23(1): 44, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347549

RESUMO

Over the past thirty years, epigenetic regulation of gene expression has gained increasing interest as it was shown to be implicated in illnesses ranging from cancers to parasitic diseases. In the malaria parasite, epigenetics was shown to be involved in several key steps of the complex life cycle of Plasmodium, among which asexual development and sexual commitment, but also in major biological processes like immune evasion, response to environmental changes or DNA repair. Because epigenetics plays such paramount roles in the Plasmodium parasite, enzymes involved in these regulating pathways represent a reservoir of potential therapeutic targets. This review focuses on epigenetic regulatory processes and their effectors in the malaria parasite, as well as the inhibitors of epigenetic pathways and their potential as new anti-malarial drugs. Such types of drugs could be formidable tools that may contribute to malaria eradication in a context of widespread resistance to conventional anti-malarials.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Parasitos , Plasmodium , Animais , Humanos , Plasmodium falciparum , Malária Falciparum/parasitologia , Epigênese Genética , Malária/parasitologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico
2.
Pharmaceutics ; 15(10)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37896200

RESUMO

The use of artemisinin and its derivatives has helped reduce the burden of malaria caused by Plasmodium falciparum. However, artemisinin-resistant parasites are able, in the presence of artemisinins, to stop their cell cycles. This quiescent state can alter the activity of artemisinin partner drugs leading to a secondary drug resistance and thus threatens malaria eradication strategies. Drugs targeting epigenetic mechanisms (namely epidrugs) are emerging as potential antimalarial drugs. Here, we set out to evaluate a selection of various epidrugs for their activity against quiescent parasites, to explore the possibility of using these compounds to counter artemisinin resistance. The 32 chosen epidrugs were first screened for their antiplasmodial activity and selectivity. We then demonstrated, thanks to the specific Quiescent-stage Survival Assay, that four epidrugs targeting both histone methylation or deacetylation as well as DNA methylation decrease the ability of artemisinin-resistant parasites to recover after artemisinin exposure. In the quest for novel antiplasmodial drugs with new modes of action, these results reinforce the therapeutic potential of epidrugs as antiplasmodial drugs especially in the context of artemisinin resistance.

4.
Cells ; 11(16)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36010577

RESUMO

Transposable elements (TEs) are mobile genetic elements that constitute a sizeable portion of many eukaryotic genomes. Through their mobility, they represent a major source of genetic variation, and their activation can cause genetic instability and has been linked to aging, cancer and neurodegenerative diseases. Accordingly, tight regulation of TE transcription is necessary for normal development. Chromatin is at the heart of TE regulation; however, we still lack a comprehensive understanding of the precise role of chromatin marks in TE silencing and how chromatin marks are established and maintained at TE loci. In this review, I discuss evidence documenting the contribution of chromatin-associated proteins and histone marks in TE regulation across different species with an emphasis on Drosophila and mammalian systems.


Assuntos
Cromatina , Elementos de DNA Transponíveis , Animais , Cromatina/genética , Elementos de DNA Transponíveis/genética , Drosophila/genética , Código das Histonas , Mamíferos/genética
5.
Front Cell Dev Biol ; 9: 795680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35178397

RESUMO

GATA transcription factors play crucial roles in various developmental processes in organisms ranging from flies to humans. In mammals, GATA factors are characterized by the presence of two highly conserved domains, the N-terminal (N-ZnF) and the C-terminal (C-ZnF) zinc fingers. The Drosophila GATA factor Serpent (Srp) is produced in different isoforms that contains either both N-ZnF and C-ZnF (SrpNC) or only the C-ZnF (SrpC). Here, we investigated the functional roles ensured by each of these isoforms during Drosophila development. Using the CRISPR/Cas9 technique, we generated new mutant fly lines deleted for one (ΔsrpNC) or the other (ΔsrpC) encoded isoform, and a third one with a single point mutation in the N-ZnF that alters its interaction with its cofactor, the Drosophila FOG homolog U-shaped (Ush). Analysis of these mutants revealed that the Srp zinc fingers are differentially required for Srp to fulfill its functions. While SrpC is essential for embryo to adult viability, SrpNC, which is the closest conserved isoform to that of vertebrates, is not. However, to ensure its specific functions in larval hematopoiesis and fertility, Srp requires the presence of both N- and C-ZnF (SrpNC) and interaction with its cofactor Ush. Our results also reveal that in vivo the presence of N-ZnF restricts rather than extends the ability of GATA factors to regulate the repertoire of C-ZnF bound target genes.

6.
Nucleic Acids Res ; 48(3): 1206-1224, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31799607

RESUMO

The histone demethylase LSD1 is a key chromatin regulator that is often deregulated in cancer. Its ortholog, dLsd1 plays a crucial role in Drosophila oogenesis; however, our knowledge of dLsd1 function is insufficient to explain its role in the ovary. Here, we have performed genome-wide analysis of dLsd1 binding in the ovary, and we document that dLsd1 is preferentially associated to the transcription start site of developmental genes. We uncovered an unanticipated interplay between dLsd1 and the GATA transcription factor Serpent and we report an unexpected role for Serpent in oogenesis. Besides, our transcriptomic data show that reducing dLsd1 levels results in ectopic transposable elements (TE) expression correlated with changes in H3K4me2 and H3K9me2 at TE loci. In addition, our results suggest that dLsd1 is required for Piwi dependent TE silencing. Hence, we propose that dLsd1 plays crucial roles in establishing specific gene expression programs and in repressing transposons during oogenesis.


Assuntos
Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , Fatores de Transcrição GATA/genética , Oogênese/genética , Oxirredutases N-Desmetilantes/genética , Animais , Proteínas Argonautas/genética , Cromatina/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Controladores do Desenvolvimento/genética , Histonas/genética , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Sítio de Iniciação de Transcrição
7.
Clin Epigenetics ; 11(1): 91, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217032

RESUMO

BACKGROUND: Drawing the epigenome landscape of Alzheimer's disease (AD) still remains a challenge. To characterize the epigenetic molecular basis of the human hippocampus in AD, we profiled genome-wide DNA methylation levels in hippocampal samples from a cohort of pure AD patients and controls by using the Illumina 450K methylation arrays. RESULTS: Up to 118 AD-related differentially methylated positions (DMPs) were identified in the AD hippocampus, and extended mapping of specific regions was obtained by bisulfite cloning sequencing. AD-related DMPs were significantly correlated with phosphorylated tau burden. Functional analysis highlighted that AD-related DMPs were enriched in poised promoters that were not generally maintained in committed neural progenitor cells, as shown by ChiP-qPCR experiments. Interestingly, AD-related DMPs preferentially involved neurodevelopmental and neurogenesis-related genes. Finally, InterPro ontology analysis revealed enrichment in homeobox-containing transcription factors in the set of AD-related DMPs. CONCLUSIONS: These results suggest that altered DNA methylation in the AD hippocampus occurs at specific regulatory regions crucial for neural differentiation supporting the notion that adult hippocampal neurogenesis may play a role in AD through epigenetic mechanisms.


Assuntos
Doença de Alzheimer/genética , Metilação de DNA , Genes Homeobox , Hipocampo/química , Neurogênese , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Cadáver , Estudos de Casos e Controles , Epigênese Genética , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Regiões Promotoras Genéticas , Proteínas tau/metabolismo
8.
Mol Cell Biol ; 35(24): 4199-211, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26438601

RESUMO

The lysine (K)-specific demethylase (LSD1) family of histone demethylases regulates chromatin structure and the transcriptional potential of genes. LSD1 is frequently deregulated in tumors, and depletion of LSD1 family members causes developmental defects. Here, we report that reductions in the expression of the Pumilio (PUM) translational repressor complex enhanced phenotypes due to dLsd1 depletion in Drosophila. We show that the PUM complex is a target of LSD1 regulation in fly and mammalian cells and that its expression is inversely correlated with LSD1 levels in human bladder carcinoma. Unexpectedly, we find that PUM posttranscriptionally regulates LSD1 family protein levels in flies and human cells, indicating the existence of feedback loops between the LSD1 family and the PUM complex. Our results highlight a new posttranscriptional mechanism regulating LSD1 activity and suggest that the feedback loop between the LSD1 family and the PUM complex may be functionally important during development and in human malignancies.


Assuntos
Proteínas de Drosophila/metabolismo , Retroalimentação Fisiológica , Oxirredutases N-Desmetilantes/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/biossíntese , Drosophila , Proteínas de Drosophila/biossíntese , Células HeLa , Histona Desmetilases/metabolismo , Humanos , Células MCF-7 , Camundongos , Interferência de RNA , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Interferente Pequeno , Proteínas de Ligação a RNA/biossíntese , Neoplasias da Bexiga Urinária/patologia
9.
Hum Mol Genet ; 24(2): 330-45, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25168387

RESUMO

Huntington's disease is an autosomal dominant neurodegenerative disorder caused by a CAG expansion mutation in HTT, the gene encoding huntingtin. Evidence from both human genotype-phenotype relationships and mouse model systems suggests that the mutation acts by dysregulating some normal activity of huntingtin. Recent work in the mouse has revealed a role for huntingtin in epigenetic regulation during development. Here, we examine the role of the Drosophila huntingtin ortholog (dhtt) in chromatin regulation in the development of the fly. Although null dhtt mutants display no overt phenotype, we found that dhtt acts as a suppressor of position-effect variegation (PEV), suggesting that it influences chromatin organization. We demonstrate that dhtt affects heterochromatin spreading in a PEV model by modulating histone H3K9 methylation levels at the heterochromatin-euchromatin boundary. To gain mechanistic insights into how dhtt influences chromatin function, we conducted a candidate genetic screen using RNAi lines targeting known PEV modifier genes. We found that dhtt modifies phenotypes caused by knockdown of a number of key epigenetic regulators, including chromatin-associated proteins, histone demethylases (HDMs) and methyltransferases. Notably, dhtt strongly modifies phenotypes resulting from loss of the HDM dLsd1, in both the ovary and wing, and we demonstrate that dhtt appears to act as a facilitator of dLsd1 function in regulating global histone H3K4 methylation levels. These findings suggest that a fundamental aspect of huntingtin function in heterochromatin/euchromatin organization is evolutionarily conserved across phyla.


Assuntos
Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Heterocromatina/metabolismo , Doença de Huntington/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Drosophila/genética , Proteínas de Drosophila , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Heterocromatina/genética , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Masculino , Metilação , Proteínas Associadas aos Microtúbulos/genética , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
10.
Biomol Concepts ; 4(1): 13-27, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25436562

RESUMO

Since their discovery in 2004, histone demethylases have emerged as key regulators of chromatin. Recent studies have started to reveal the interconnections between histone demethylases and signaling pathways, suggesting that this interplay drives fundamental biological processes. Here, we summarize the different families and subfamilies of histone demethylases and the insights into the biological roles of these enzymes that have been provided by the analysis of mutant animals. We then review recent work linking demethylases and signaling pathways. These studies suggest that demethylase activities are a component of the critical connections that enable environmental signals to modulate the epigenetic landscape of a cell. A greater mechanistic understanding of the network of signals that control chromatin states during normal cellular processes, together with a better understanding of the ways that epigenetic alterations lead to uncontrolled cell proliferation, might help in the design of effective tools for cancer therapy.


Assuntos
Histona Desmetilases/metabolismo , Transdução de Sinais/genética , Animais , Regulação da Expressão Gênica , Humanos , Metilação , Modelos Biológicos , Transcrição Gênica
12.
Mol Cell ; 42(5): 689-99, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21596603

RESUMO

Epigenetic regulation of gene expression by histone-modifying corepressor complexes is central to normal animal development. The NAD(+)-dependent deacetylase and gene repressor SIRT1 removes histone H4K16 acetylation marks and facilitates heterochromatin formation. However, the mechanistic contribution of SIRT1 to epigenetic regulation at euchromatic loci and whether it acts in concert with other chromatin-modifying activities to control developmental gene expression programs remain unclear. We describe here a SIRT1 corepressor complex containing the histone H3K4 demethylase LSD1/KDM1A and several other LSD1-associated proteins. SIRT1 and LSD1 interact directly and play conserved and concerted roles in H4K16 deacetylation and H3K4 demethylation to repress genes regulated by the Notch signaling pathway. Mutations in Drosophila SIRT1 and LSD1 orthologs result in similar developmental phenotypes and genetically interact with the Notch pathway in Drosophila. These findings offer new insights into conserved mechanisms of epigenetic gene repression and regulation of development by SIRT1 in metazoans.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Oxirredutases N-Desmetilantes/fisiologia , Receptores Notch/genética , Sirtuína 1/fisiologia , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Imunoprecipitação , Mutação , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Fenótipo , Receptores Notch/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
13.
Genes Dev ; 25(1): 17-28, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21205864

RESUMO

Dynamic regulation of histone modifications is critical during development, and aberrant activity of chromatin-modifying enzymes has been associated with diseases such as cancer. Histone demethylases have been shown to play a key role in eukaryotic gene transcription; however, little is known about how their activities are coordinated in vivo to regulate specific biological processes. In Drosophila, two enzymes, dLsd1 (Drosophila ortholog of lysine-specific demethylase 1) and Lid (little imaginal discs), demethylate histone H3 at Lys 4 (H3K4), a residue whose methylation is associated with actively transcribed genes. Our studies show that compound mutation of Lid and dLsd1 results in increased H3K4 methylation levels. However, unexpectedly, Lid mutations strongly suppress dLsd1 mutant phenotypes. Investigation of the basis for this antagonism revealed that Lid opposes the functions of dLsd1 and the histone methyltransferase Su(var)3-9 in promoting heterochromatin spreading at heterochromatin-euchromatin boundaries. Moreover, our data reveal a novel role for dLsd1 in Notch signaling in Drosophila, and a complex network of interactions between dLsd1, Lid, and Notch signaling at euchromatic genes. These findings illustrate the complexity of functional interplay between histone demethylases in vivo, providing insights into the epigenetic regulation of heterochromatin/euchromatin boundaries by Lid and dLsd1 and showing their involvement in Notch pathway-specific control of gene expression in euchromatin.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Metilação , Mutação/genética , Oxirredutases N-Desmetilantes/genética , Fenótipo , Receptores Notch/genética , Transdução de Sinais
14.
Science ; 330(6012): 1787-97, 2010 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-21177974

RESUMO

To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.


Assuntos
Cromatina , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Genoma de Inseto , Anotação de Sequência Molecular , Animais , Sítios de Ligação , Cromatina/genética , Cromatina/metabolismo , Biologia Computacional/métodos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Epigênese Genética , Regulação da Expressão Gênica , Genes de Insetos , Genômica/métodos , Histonas/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
15.
Nature ; 455(7212): 552-6, 2008 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-18794899

RESUMO

The E2F1 transcription factor can promote proliferation or apoptosis when activated, and is a key downstream target of the retinoblastoma tumour suppressor protein (pRB). Here we show that E2F1 is a potent and specific inhibitor of beta-catenin/T-cell factor (TCF)-dependent transcription, and that this function contributes to E2F1-induced apoptosis. E2F1 deregulation suppresses beta-catenin activity in an adenomatous polyposis coli (APC)/glycogen synthase kinase-3 (GSK3)-independent manner, reducing the expression of key beta-catenin targets including c-MYC. This interaction explains why colorectal tumours, which depend on beta-catenin transcription for their abnormal proliferation, keep RB1 intact. Remarkably, E2F1 activity is also repressed by cyclin-dependent kinase-8 (CDK8), a colorectal oncoprotein. Elevated levels of CDK8 protect beta-catenin/TCF-dependent transcription from inhibition by E2F1. Thus, by retaining RB1 and amplifying CDK8, colorectal tumour cells select conditions that collectively suppress E2F1 and enhance the activity of beta-catenin.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Fator de Transcrição E2F1/antagonistas & inibidores , Fator de Transcrição E2F1/metabolismo , Proteína do Retinoblastoma/metabolismo , Transcrição Gênica , beta Catenina/antagonistas & inibidores , beta Catenina/metabolismo , Proteína da Polipose Adenomatosa do Colo/metabolismo , Apoptose , Linhagem Celular , Quinase 8 Dependente de Ciclina , Regulação da Expressão Gênica , Genes myc/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Proteína do Retinoblastoma/genética , Transdução de Sinais , Fatores de Transcrição TCF/metabolismo , Proteínas Wnt/metabolismo
16.
PLoS Genet ; 4(8): e1000153, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18688282

RESUMO

In mammalian cells, RB/E2F and p53 are intimately connected, and crosstalk between these pathways is critical for the induction of cell cycle arrest or cell death in response to cellular stresses. Here we have investigated the genetic interactions between RBF/E2F and p53 pathways during Drosophila development. Unexpectedly, we find that the pro-apoptotic activities of E2F and p53 are independent of one another when examined in the context of Drosophila development: apoptosis induced by the deregulation of dE2F1, or by the overexpression of dE2F1, is unaffected by the elimination of dp53; conversely, dp53-induced phenotypes are unaffected by the elimination of dE2F activity. However, dE2F and dp53 converge in the context of a DNA damage response. Both dE2F1/dDP and dp53 are required for DNA damage-induced cell death, and the analysis of rbf1 mutant eye discs indicates that dE2F1/dDP and dp53 cooperatively promote cell death in irradiated discs. In this context, the further deregulation in the expression of pro-apoptotic genes generates an additional sensitivity to apoptosis that requires both dE2F/dDP and dp53 activity. This sensitivity differs from DNA damage-induced apoptosis in wild-type discs (and from dE2F/dDP-induced apoptosis in un-irradiated rbf1 mutant eye discs) by being dependent on both hid and reaper. These results show that pro-apoptotic activities of dE2F1 and dp53 are surprisingly separable: dp53 is required for dE2F-dependent apoptosis in the response to DNA damage, but it is not required for dE2F-dependent apoptosis caused simply by the inactivation of rbf1.


Assuntos
Apoptose , Dano ao DNA , Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/fisiologia , Fatores de Transcrição E2F/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteína Supressora de Tumor p53/metabolismo , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Fatores de Transcrição E2F/genética , Feminino , Masculino , Proteína do Retinoblastoma , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética
17.
Curr Biol ; 17(9): 808-12, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17462898

RESUMO

Histone-tail modifications play a fundamental role in the processes that establish chromatin structure and determine gene expression. One such modification, histone methylation, was considered irreversible until the recent discovery of histone demethylases. Lsd1 was the first histone demethylase to be identified. Lsd1 is highly conserved in many species, from yeast to humans, but its function has primarily been studied through biochemical approaches. The mammalian ortholog has been shown to demethylate monomethyl- and dimethyl-K4 and -K9 residues of histone H3. Here we describe the effects of Lsd1 mutation in Drosophila. The inactivation of dLsd1 strongly affects the global level of monomethyl- and dimethyl-H3-K4 methylation and results in elevated expression of a subset of genes. dLsd1 is not an essential gene, but animal viability is strongly reduced in mutant animals in a gender-specific manner. Interestingly, dLsd1 mutants are sterile and possess defects in ovary development, indicating that dLsd1 has tissue-specific functions. Mutant alleles of dLsd1 suppress positional-effect variegation, suggesting a disruption of the balance between euchromatin and heterochromatin. Taken together, these results show that dLsd1-mediated H3-K4 demethylation has a significant and specific role in Drosophila development.


Assuntos
Metilação de DNA , Proteínas de Drosophila/metabolismo , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Fenótipo , Animais , Western Blotting , Drosophila/embriologia , Proteínas de Drosophila/genética , Mutação/genética , Oxirredutases N-Desmetilantes/genética
18.
J Biol Chem ; 282(1): 454-66, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17062573

RESUMO

The two known DP proteins, TFDP1 and -2, bind E2Fs to form heterodimers essential for high affinity DNA binding and efficient transcriptional activation/repression. Here we report the identification of a new member of the DP family, human TFDP3. Despite the high degree of sequence similarity, TFDP3 is apparently distinct from TFDP1 in function. Although TFDP3 retained the capacity to bind to E2F proteins, the resulting heterodimers failed to interact with the E2F consensus sequence. In contrast to the stimulatory effect of TFDP1, TFDP3 inhibited E2F-mediated transcriptional activation. Consistent with this observation, we found that ectopic expression of TFDP3 impaired cell cycle progression from G(1) to S phase instead of facilitating such a transition as TFDP1 does. Sequence substitution analysis indicated that the DNA binding domain of TFDP3 was primarily responsible for the lack of DNA binding ability of E2F-TFDP3 heterodimers and the inhibition of E2F-mediated transcriptional activation. Fine mapping further revealed four amino acids in this region, which were critical for the functional conversion from activation by TFDP1 to suppression by TFDP3. In conclusion, these studies identify a new DP protein and a novel mechanism whereby E2F function is regulated.


Assuntos
Proteínas de Ligação a DNA/química , Fator de Transcrição DP1/química , Fator de Transcrição DP1/fisiologia , Ativação Transcricional , Sequência de Aminoácidos , Animais , Células COS , Proliferação de Células , Chlorocebus aethiops , Dimerização , Células HeLa , Humanos , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transfecção
19.
Mol Cell Biol ; 26(20): 7601-15, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16954388

RESUMO

The inactivation of retinoblastoma (Rb) family members sensitizes cells to apoptosis. This cell death affects the development of mutant animals and also provides a critical constraint to the malignant potential of Rb mutant tumor cells. The extent of apoptosis caused by the inactivation of Rb is highly cell type and tissue specific, but the underlying reasons for this variation are poorly understood. Here, we characterize a specific time and place during Drosophila melanogaster development where rbf1 mutant cells are exquisitely sensitive to apoptosis. During the third larval instar, many rbf1 mutant cells undergo E2F-dependent cell death in the morphogenetic furrow. Surprisingly, this pattern of apoptosis is not caused by inappropriate cell cycle progression but instead involves the action of Argos, a secreted protein that negatively regulates Drosophila epidermal growth factor receptor (EGFR [DER]) activity. Apoptosis of rbf1 mutant cells is suppressed by the activation of DER, ras, or raf or by the inactivation of argos, sprouty, or gap1, and inhibition of DER strongly enhances apoptosis in rbf1 mutant discs. We show that RBF1 and a DER/ras/raf signaling pathway cooperate in vivo to suppress E2F-dependent apoptosis and that the loss of RBF1 alters a normal program of cell death that is controlled by Argos and DER. These results demonstrate that a gradient of DER/ras/raf signaling that occurs naturally during development provides the contextual signals that determine when and where the inactivation of rbf1 results in dE2F1-dependent apoptosis.


Assuntos
Apoptose , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Fator de Transcrição E2F1/metabolismo , Receptores ErbB/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Fator de Transcrição E2F1/genética , Olho/citologia , Olho/metabolismo , Regulação da Expressão Gênica , Mutação/genética , Proteína do Retinoblastoma , Sensibilidade e Especificidade , Fatores de Transcrição/genética
20.
Dev Cell ; 9(4): 463-75, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16198289

RESUMO

E2F transcription factors are generally believed to be positive regulators of apoptosis. In this study, we show that dE2F1 and dDP are important for the normal pattern of DNA damage-induced apoptosis in Drosophila wing discs. Unexpectedly, the role that E2F plays varies depending on the position of the cells within the disc. In irradiated wild-type discs, intervein cells show a high level of DNA damage-induced apoptosis, while cells within the D/V boundary are protected. In irradiated discs lacking E2F regulation, intervein cells are largely protected, but apoptotic cells are found at the D/V boundary. The protective effect of E2F at the D/V boundary is due to a spatially restricted role in the repression of hid. These loss-of-function experiments demonstrate that E2F cannot be classified simply as a pro- or antiapoptotic factor. Instead, the overall role of E2F in the damage response varies greatly and depends on the cellular context.


Assuntos
Apoptose/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Estruturas Embrionárias , Animais , Dano ao DNA , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/metabolismo , Estruturas Embrionárias/anatomia & histologia , Estruturas Embrionárias/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Hibridização In Situ , Mutação , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...