Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38931745

RESUMO

Violin is one of the most complex musical instruments to learn. The learning process requires constant training and many hours of exercise and is primarily based on a student-teacher interaction where the latter guides the beginner through verbal instructions, visual demonstrations, and physical guidance. The teacher's instruction and practice allow the student to learn gradually how to perform the correct gesture autonomously. Unfortunately, these traditional teaching methods require the constant supervision of a teacher and the interpretation of non-real-time feedback provided after the performance. To address these limitations, this work presents a novel interface (Visual Interface for Bowing Evaluation-VIBE) to facilitate student's progression throughout the learning process, even in the absence of direct teacher intervention. The proposed interface allows two key parameters of bowing movements to be monitored, namely, the angle between the bow and the string (i.e., α angle) and the bow tilt (i.e., ß angle), providing real-time visual feedback on how to correctly move the bow. Results collected on 24 beginners (12 exposed to visual feedback, 12 in a control group) showed a positive effect of the real-time visual feedback on the improvement of bow control. Moreover, the subjects exposed to visual feedback judged the latter as useful to correct their movement and clear in terms of the presentation of data. Although the task was rated as harder when performed with the additional feedback, the subjects did not perceive the presence of a violin teacher as essential to interpret the feedback.


Assuntos
Retroalimentação Sensorial , Música , Estudantes , Humanos , Retroalimentação Sensorial/fisiologia , Feminino , Masculino , Aprendizagem/fisiologia
2.
Sensors (Basel) ; 22(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35009661

RESUMO

Recent advances in the control of overground exoskeletons are being centered on improving balance support and decreasing the reliance on crutches. However, appropriate methods to quantify the stability of these exoskeletons (and their users) are still under development. A reliable and reproducible balance assessment is critical to enrich exoskeletons' performance and their interaction with humans. In this work, we present the BenchBalance system, which is a benchmarking solution to conduct reproducible balance assessments of exoskeletons and their users. Integrating two key elements, i.e., a hand-held perturbator and a smart garment, BenchBalance is a portable and low-cost system that provides a quantitative assessment related to the reaction and capacity of wearable exoskeletons and their users to respond to controlled external perturbations. A software interface is used to guide the experimenter throughout a predefined protocol of measurable perturbations, taking into account antero-posterior and mediolateral responses. In total, the protocol is composed of sixteen perturbation conditions, which vary in magnitude and location while still controlling their orientation. The data acquired by the interface are classified and saved for a subsequent analysis based on synthetic metrics. In this paper, we present a proof of principle of the BenchBalance system with a healthy user in two scenarios: subject not wearing and subject wearing the H2 lower-limb exoskeleton. After a brief training period, the experimenter was able to provide the manual perturbations of the protocol in a consistent and reproducible way. The balance metrics defined within the BenchBalance framework were able to detect differences in performance depending on the perturbation magnitude, location, and the presence or not of the exoskeleton. The BenchBalance system will be integrated at EUROBENCH facilities to benchmark the balance capabilities of wearable exoskeletons and their users.


Assuntos
Exoesqueleto Energizado , Dispositivos Eletrônicos Vestíveis , Benchmarking , Muletas , Humanos , Extremidade Inferior
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...