Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 108: 372-380, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27522266

RESUMO

The success of biofortification and phytoremediation practices, addressing Se deficiency and Se pollution issues, hinges crucially on the fate of selenium in the plant media in response to uptake, translocation and assimilation processes. We investigate the fate of selenium in root and shoot compartments after 3 and 6 weeks of experiment using a total of 128 plants grown in hydroponic solution supplied with 0.2, 2, 5, 20 and 100 mg L-1 of selenium in the form of selenite, selenate and a mixture of both species. Selenate-treated plants exhibited higher root-to-shoot Se translocation and total Se uptake than selenite-treated plants. Plants took advantage of the selenate mobility and presumably of the storage capacity of leaf vacuoles to circumvent selenium toxicity within the plant. Surprisingly, 28% of selenate was found in shoots of selenite-treated plants, questioning the ability of plants to oxidize selenite into selenate. Selenomethionine and methylated organo-selenium amounted to 30% and 8% respectively in shoots and 35% and 9% in roots of the identified Se, suggesting that selenium metabolization occurred concomitantly in root and shoot plant compartments and demonstrating that non-accumulator plants can synthesize notable quantities of precursor compound for volatilization. The present study demonstrated that non-accumulator plants can develop the same strategies as hyper-accumulator plants to limit selenium toxicity. When both selenate and selenite were supplied together, plants used selenate in a storage pathway and selenite in an assimilation pathway. Plants might thereby benefit from mixed supplies of selenite and selenate by saving enzymes and energy required for selenate reduction.


Assuntos
Hidroponia/métodos , Lolium/efeitos dos fármacos , Lolium/metabolismo , Selênio/farmacocinética , Transporte Biológico , Ácido Selênico/farmacocinética , Ácido Selenioso/farmacocinética , Selênio/metabolismo , Selênio/toxicidade
2.
Sci Total Environ ; 562: 280-288, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27100008

RESUMO

A better understanding of selenium fate in soils at both short and long time scales is mandatory to consolidate risk assessment models relevant for managing both contamination and soil fertilization issues. The purpose of this study was thus to investigate Se retention processes and their kinetics by monitoring time-dependent distribution/speciation changes of both ambient and freshly added Se, in the form of stable enriched selenite-77, over a 2-years field experiment. This study clearly illustrates the complex reactivity of selenium in soil considering three methodologically defined fractions (i.e. soluble, exchangeable, organic). Time-dependent redistribution of Se-77 within solid-phases having different reactivity could be described as a combination of chemical and diffusion controlled processes leading to its stronger retention. Experimental data and their kinetic modeling evidenced that transfer towards less labile bearing phases are controlled by slow processes limiting the overall sorption of Se in soils. These results were used to estimate time needed for (77)Se to reach the distribution of naturally present selenium which may extend up to several decades. Ambient Se speciation accounted for 60% to 100% of unidentified species as function of soil type whereas (77)Se(IV) remained the more abundant species after 2-years field experiment. Modeling Se in the long-term without taking account these slow sorption kinetics would thus result in underestimation of Se retention. When using models based on Kd distribution coefficient, they should be at least reliant on ambient Se which is supposed to be at equilibrium.


Assuntos
Monitoramento Ambiental/métodos , Ácido Selenioso/análise , Selênio/análise , Poluentes do Solo/análise , Solo/química
3.
Environ Sci Pollut Res Int ; 23(10): 9598-613, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26846236

RESUMO

To better understand selenium's dynamics in environmental systems, the present study aims to investigate selenium speciation and distribution in black argillaceous sediments, partially fulfilling karstic cavities into the Hydrogeological Experimental Site of Poitiers. These sediments are suspected to be responsible for selenium concentrations exceeding the European Framework Directive's drinking water limit value (10 µg L(-1)) in some specific wells. A combination of a sequential extractions scheme and single parallel extractions was thus applied on a representative argillaceous sample. Impacts of the extractions on mineral dissolution and organic matter mobilization were followed by quantifying major cations and total organic carbon (TOC) in the aqueous extracts. The nature of the released organic matter was characterized using thermochemolysis coupled with gas chromatography-mass spectrometry (GC-MS). About 10 % of selenium from the black argillaceous studied matrix could be defined as 'easily mobilizable' when the majority (around 70 %) revealed associated with the aliphatic and alkaline-soluble organic matter's fraction (about 20 %). In these fractions, selenium speciation was moreover dominated by oxidized species including a mixture of Se(VI) (20-30 %) and Se(IV) (70-80 %) in the 'easily mobilizable' fraction, while only Se(IV) was detected in alkaline-soluble organic matter fraction.


Assuntos
Sedimentos Geológicos/química , Selênio/análise , Selênio/química , Fracionamento Químico , França , Cromatografia Gasosa-Espectrometria de Massas
4.
Anal Bioanal Chem ; 407(30): 9029-42, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26427506

RESUMO

Selenium is both essential and toxic for mammals; the range between the two roles is narrow and not only dose-dependent but also related to the chemical species present in foodstuff. Unraveling the metabolism of Se in plants as a function of Se source may thus lead to ways to increase efficiency of fertilization procedures in selenium deficient regions. In this study, stable-isotope tracing was applied for the first time in plants to simultaneously monitor the bio-incorporation of two inorganic Se species commonly used as foodstuff enrichment sources. Occurrence and speciation of Se coming from different Se sources were investigated in root and leaf extracts of ryegrass (Lolium perenne L.), which had been co-exposed to two labeled Se species ((77)SeIV and (82)SeVI). Although the plant absorbed similar amounts of Se when supplied in the form of selenite or selenate, the results evidenced marked differences in speciation and tissues allocation. Selenite was converted into organic forms incorporated mostly into high molecular weight compounds with limited translocation to leaves, whereas selenate was highly mobile being little assimilated into organic forms. Double-spike isotopic tracer methodology makes it possible to compare the metabolism of two species-specific Se sources simultaneously in a single experiment and to analyze Se behavior in not-hyperaccumulator plants, the ICP-MS sensitivity being improved by the use of enriched isotopes.


Assuntos
Marcação por Isótopo/métodos , Isótopos/metabolismo , Lolium/metabolismo , Selênio/metabolismo , Transporte Biológico , Isótopos/análise , Lolium/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Selênio/análise
5.
Anal Bioanal Chem ; 406(4): 1221-31, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24048517

RESUMO

A better understanding of Se fate in soils is required for different environmental issues, such as radioactive waste management or soil fertilization procedures. In these contexts, the mobility and speciation of Se have to be studied at both short and long terms after Se inputs. Here, we present a new methodology to monitor simultaneously the reactivity of added (isotopic enriched tracers) and ambient Se at trace level in soils by high-performance liquid chromatography inductively coupled plasma mass spectrometry (ICP-MS) following specific extractions. To do so, the collision/reaction cell of the ICP-MS instrument and the interference corrections were optimized to measure reliably the four major Se isotopes. To exemplify the method capabilities, the behaviors of added (77)Se(IV) and ambient Se were followed up in two soils submitted to an ageing process during 3 months. The solid/liquid distribution of added Se reached a steady state after 1 month while its speciation and distribution among soil solid phases were still changing after 3 months. The results clearly demonstrate that slow processes are involved in Se retention and transformation in soils. The usual short-term experiments (<1 month) performed after Se addition are thus not suitable for long-term risk assessment. Interestingly, the behavior of added Se tended to that of ambient Se, suggesting that ambient Se would be useful to infer the fate of Se input over long time scales.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Isótopos/química , Espectrometria de Massas/métodos , Selênio/química , Solo/química , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...