Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dev Biol ; 9(4)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34842711

RESUMO

Brd2 belongs to the BET family of epigenetic transcriptional co-regulators that act as adaptor-scaffolds for the assembly of chromatin-modifying complexes and other factors at target gene promoters. Brd2 is a protooncogene and candidate gene for juvenile myoclonic epilepsy in humans, a homeobox gene regulator in Drosophila, and a maternal-zygotic factor and cell death modulator that is necessary for normal development of the vertebrate central nervous system (CNS). As two copies of Brd2 exist in zebrafish, we use antisense morpholino knockdown to probe the role of paralog Brd2b, as a comparative study to Brd2a, the ortholog of human Brd2. A deficiency in either paralog results in excess cell death and dysmorphology of the CNS, whereas only Brd2b deficiency leads to loss of circulation and occlusion of the pronephric duct. Co-knockdown of both paralogs suppresses single morphant defects, while co-injection of morpholinos with paralogous RNA enhances them, suggesting novel genetic interaction with functional antagonism. Brd2 diversification includes paralog-specific RNA variants, a distinct localization of maternal factors, and shared and unique spatiotemporal expression, providing unique insight into the evolution and potential functions of this gene.

2.
Cryobiology ; 81: 210-213, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29407225

RESUMO

Chilling sensitivity in oocytes of the zebrafish represents a potential obstacle to their successful cryopreservation. Here, we report the first cryomicroscopic observations of the response of zebrafish oocytes to chilling conditions. In activated stage V oocytes that had been exposed to hypothermic temperatures, we observed a latent effect of chilling, manifesting as a granular precipitate that appeared in the perivitelline fluid upon return to 28.5 °C. The granules were visible in unstained oocytes under transmitted light microscopy, and the resulting perivitelline turbidity increased in a dose-dependent manner with decreasing chilling temperature (p < 0.001), as well as with increasing time of hypothermic exposure (p < 0.0001). The change in appearance of the perivitelline space in oocytes that had been chilled and rewarmed became statistically significant after a 7-min exposure to 10 °C and after only 30 s at 1 °C (p < 0.05). Thus, even moderate chilling exposures can lead to detectable changes in activated zebrafish oocytes.


Assuntos
Criopreservação/veterinária , Oócitos/patologia , Peixe-Zebra , Animais , Feminino
3.
Mech Dev ; 146: 10-30, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28549975

RESUMO

Brd2 is a member of the bromodomain-extraterminal domain (BET) family of proteins and functions as an acetyl-histone-directed transcriptional co-regulator and recruitment scaffold in chromatin modification complexes affecting signal-dependent transcription. While Brd2 acts as a protooncogene in mammalian blood, developmental studies link it to regulation of neuronal apoptosis and epilepsy, and complete knockout of the gene is invariably embryonic lethal. In Drosophila, the Brd2 homolog acts as a maternal effect factor necessary for segment formation and identity and proper expression of homeotic loci, including Ultrabithorax and engrailed. To test the various roles attributed to Brd2 in a single developmental system representing a non-mammalian vertebrate, we conducted a phenotypic characterization of Brd2a deficient zebrafish embryos produced by morpholino knockdown and corroborated by Crispr-Cas9 disruption and small molecule inhibitor treatments. brd2aMO morphants exhibit reduced hindbrain with an ill-defined midbrain-hindbrain boundary (MHB) region; irregular notochord, neural tube, and somites; and abnormalities in ventral trunk and ventral nerve cord interneuron positioning. Using whole mount TUNEL and confocal microscopy, we uncover a significant decrease, then a dramatic increase, of p53-independent cell death at the start and end of segmentation, respectively. In contrast, using qualitative and quantitative analyses of BrdU incorporation, phosphohistone H3-tagging, and flow cytometry, we detect little effect of Brd2a knockdown on overall proliferation levels in embryos. RNA in situ hybridization shows reduced or absent expression of homeobox gene eng2a and paired box gene pax2a, in the hindbrain domain of the MHB region, and an overabundance of pax2a-positive kidney progenitors, in knockdowns. Together, these results suggest an evolutionarily conserved role for Brd2 in the proper formation and/or patterning of segmented tissues, including the vertebrate CNS, where it acts as a bi-modal regulator of apoptosis, and is necessary, directly or indirectly, for proper expression of genes that pattern the MHB and/or regulate differentiation in the anterior hindbrain.


Assuntos
Morfogênese/genética , Tubo Neural/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Transcrição Gênica , Proteínas de Peixe-Zebra/genética , Animais , Apoptose/genética , Epigênese Genética/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Mesencéfalo/crescimento & desenvolvimento , Morfolinos/genética , Proteínas do Tecido Nervoso/genética , Rombencéfalo/crescimento & desenvolvimento , Somitos/crescimento & desenvolvimento , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
4.
Int J Dev Biol ; 58(1): 35-43, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24860993

RESUMO

Expansion of the hollow fluid-filled embryonic brain occurs by an increase in intraluminal pressure created by accumulation of cerebrospinal fluid (CSF). Experiments have shown a direct correlation between cavity pressure and cell proliferation within the neuroepithelium. These findings lead us to ask how mechanistically this might come about. Are there perhaps molecules on the luminal surface of the embryonic neuroepithelium, such as focal adhesion kinases (FAKs) known to respond to tension in other epithelial cells? Immunodetection using antibodies to total FAK and p-FAK was performed with subsequent confocal analysis of the pattern of their activation under normal intraluminal pressure and induced chronic pressure. Western analysis was also done to look at the amount of FAK expression, as well as its activation under these same conditions. Using immunolocalization, we have shown that FAK is present and activated on both apical and basolateral surfaces and within the cytoplasm of the neuroepithelial cells. This pattern changed profoundly when the neuroepithelium was under pressure. By Western blot, we have shown that FAK was upregulated and activated in the neuroepithelium of the embryos just after the neural tube becomes a closed pressurized system, with phosphorylation detected on the luminal instead of the basal surface, along with an increase in cell proliferation. Chronic hyper-pressure does not induce an increase in phosphorylation of FAK. In conclusion, here we show that neuroepithelial cells respond to intraluminal pressure via FAK phosphorylation on the luminal surface.


Assuntos
Encéfalo/embriologia , Encéfalo/enzimologia , Quinase 1 de Adesão Focal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mecanotransdução Celular/fisiologia , Células Neuroepiteliais/fisiologia , Animais , Western Blotting , Células Cultivadas , Embrião de Galinha , Imunofluorescência , Técnicas Imunoenzimáticas , Microscopia Eletrônica , Células Neuroepiteliais/citologia , Fosforilação , Pressão
5.
BMC Dev Biol ; 8: 39, 2008 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-18402692

RESUMO

BACKGROUND: Brd2 belongs to the bromodomain-extraterminal domain (BET) family of transcriptional co-regulators, and functions as a pivotal histone-directed recruitment scaffold in chromatin modification complexes affecting signal-dependent transcription. Brd2 facilitates expression of genes promoting proliferation and is implicated in apoptosis and in egg maturation and meiotic competence in mammals; it is also a susceptibility gene for juvenile myoclonic epilepsy (JME) in humans. The brd2 ortholog in Drosophila is a maternal effect, embryonic lethal gene that regulates several homeotic loci, including Ultrabithorax. Despite its importance, there are few systematic studies of Brd2 developmental expression in any organism. To help elucidate both conserved and novel gene functions, we cloned and characterized expression of brd2 cDNAs in zebrafish, a vertebrate system useful for genetic analysis of development and disease, and for study of the evolution of gene families and functional diversity in chordates. RESULTS: We identify cDNAs representing two paralogous brd2 loci in zebrafish, brd2a on chromosome 19 and brd2b on chromosome 16. By sequence similarity, syntenic and phylogenetic analyses, we present evidence for structural divergence of brd2 after gene duplication in fishes. brd2 paralogs show potential for modular domain combinations, and exhibit distinct RNA expression patterns throughout development. RNA in situ hybridizations in oocytes and embryos implicate brd2a and brd2b as maternal effect genes involved in egg polarity and egg to embryo transition, and as zygotic genes important for development of the vertebrate nervous system and for morphogenesis and differentiation of the digestive tract. Patterns of brd2 developmental expression in zebrafish are consistent with its proposed role in Homeobox gene regulation. CONCLUSION: Expression profiles of zebrafish brd2 paralogs support a role in vertebrate developmental patterning and morphogenesis. Our study uncovers both maternal and zygotic contributions of brd2, the analysis of which may provide insight into the earliest events in vertebrate development, and the etiology of some forms of epilepsy, for which zebrafish is an important model. Knockdowns of brd2 paralogs in zebrafish may now test proposed function and interaction with homeotic loci in vertebrates, and help reveal the extent to which functional novelty or partitioning has occurred after gene duplication.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Transcrição Gênica , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Northern Blotting , DNA Complementar , Hibridização In Situ , Morfogênese , Filogenia , Análise de Sequência de DNA , Peixe-Zebra/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...