Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Curr Microbiol ; 81(5): 131, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592505

RESUMO

Fresh vegetables can harbor antibiotic-resistant bacteria, including extended-spectrum ß-lactamase (ESBL)-producing Enterobacterales. Enterobacter hormaechei is a bacterium belonging to the Enterobacterales order and the most commonly identified nosocomial pathogen of Enterobacter cloacae complex. The purpose of this study was to characterize a multi-drug resistant ESBL-producing E. hormaechei strain isolated from a sample of mixed sprouts. Vegetable samples were pre-enriched in buffered peptone water, followed by enrichment in Enterobacteria Enrichment Broth, and isolation on Chromagar™ ESBL plates. One isolate from a sprout sample was confirmed to produce both ESBL and AmpC ß-lactamases through the combination disk diffusion assay using antibiotic disks containing cefotaxime and ceftazidime with or without clavulanate, and with or without cloxacillin, respectively. The isolate was also resistant to multiple antibiotics, including cefotaxime, ceftazidime, chloramphenicol, trimethoprim-sulfamethoxazole, tetracycline, gentamicin, ampicillin, and amoxicillin-clavulanate, as determined by antimicrobial susceptibility testing. Through whole genome sequencing, the isolate was identified as E. hormaechei 057-E1, which carried multiple antibiotic resistance (AR) genes and a sul2-aph(3″)-Ib-aph(6)-Id-blaTEM-1-ISEcp1 -blaCTX-M-15 gene cluster. Our results further demonstrate the important role of fresh vegetables in AR and highlight the need to develop strategies for AR mitigation in fresh vegetables.


Assuntos
Antibacterianos , Ceftazidima , Enterobacter , Antibacterianos/farmacologia , Cefotaxima , beta-Lactamases/genética , Combinação Amoxicilina e Clavulanato de Potássio
2.
Food Control ; 1322022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34629764

RESUMO

Vegetables may serve as a reservoir for antibiotic resistant bacteria and resistance genes. AmpC ß-lactamases and extended spectrum beta-lactamases (ESBL) inactivate commonly used ß-lactam antibiotics, including penicillins and cephalosporins. In this study, we determined the prevalence of AmpC and ESBL-producing Enterobacterales in retail vegetables in the United States. A total of 88 vegetable samples were collected for the screening of AmpC and ESBL-producing Enterobacterales using CHROMagar ESBL agar. These vegetables included washed ready-to-eat salad (23), microgreens/sprouts (13), lettuce (11), herbs (11), spinach (5), mushrooms (5), brussels sprouts (4), kale (3), and other vegetable samples (13). AmpC and ESBL activity in these isolates were determined using double disk combination tests. Two vegetable samples (2.27%), organic basil and brussels sprouts, were positive for AmpC-producing Enterobacterales and eight samples (9.09%), including bean sprouts, organic parsley, organic baby spinach, and several mixed salads, were positive for ESBL-producing Enterobacterales. Whole genome sequencing was used to identify the bacterial species and resistance genes in these isolates. Genes encoding AmpC ß-lactamases were found in Enterobacter hormaechei strains S43-1 and 74-2, which were consistent with AmpC production phenotypes. Multidrug-resistant E. hormaechei strains S11-1, S17-1, and S45-4 possess an ESBL gene, blaSHV66 , whereas five Serratia fonticola isolates contain genes encoding a minor ESBL, FONA-5. In addition, we used shotgun metagenomic sequencing approach to examine the microbiome and resistome profiles of three spinach samples. We found that Pseudomonas was the most prevalent bacteria genus in the spinach samples. Within the Enterobacteriaceae family, Enterobacter was the most abundant genus in the spinach samples. Moreover, antibiotic resistance genes encoding 12 major classes of antibiotics, including ß-lactam antibiotics, aminoglycoside, macrolide, fluoroquinolone, and others, were found in these spinach samples. Therefore, vegetables can serve as an important vehicle for transmitting antibiotic resistance. The study highlights the need for antibiotic resistance surveillance in vegetable products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...