Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytokine ; 64(1): 286-97, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23830819

RESUMO

Ectopic coexpression of the two chains of the Type I and Type III interferon (IFN) receptor complexes (IFN-αR1 and IFN-αR2c, or IFN-λR1 and IL-10R2) yielded sensitivity to IFN-alpha or IFN-lambda in only some cells. We found that IFN-αR1 and IFN-αR2c exhibit FRET only when expressed at equivalent and low levels. Expanded clonal cell lines expressing both IFN-αR1 and IFN-αR2c were sensitive to IFN-alpha only when IFN-αR1 and IFN-αR2c exhibited FRET in the absence of human IFN-alpha. Coexpression of RACK-1 or Jak1 enhanced the affinity of the interaction between IFN-αR1 and IFN-αR2c. Both IFN-αR1 and IFN-αR2c exhibited FRET with Jak1 and Tyk2. Together with data showing that disruption of the preassociation between the IFN-gamma receptor chains inhibited its biological activity, we propose that biologically active IFN receptors require ligand-independent juxtaposition of IFN receptor chains assisted by their associated cytosolic proteins.


Assuntos
Interferon-alfa/metabolismo , Interferon gama/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Receptores de Interferon/metabolismo , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Proteínas de Ligação ao GTP/metabolismo , Humanos , Janus Quinase 1/metabolismo , Complexos Multiproteicos , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Receptores de Quinase C Ativada , Receptores de Superfície Celular/metabolismo , TYK2 Quinase/metabolismo , Receptor de Interferon gama
2.
Cytokine ; 64(1): 272-85, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23796694

RESUMO

The observed Fluorescence Resonance Energy Transfer (FRET) between fluorescently labeled proteins varies in cells. To understand how this variation affects our interpretation of how proteins interact in cells, we developed a protocol that mathematically separates donor-independent and donor-dependent excitations of acceptor, determines the electromagnetic interaction of donors and acceptors, and quantifies the efficiency of the interaction of donors and acceptors. By analyzing large populations of cells, we found that misbalanced or insufficient expression of acceptor or donor as well as their inefficient or reversible interaction influenced FRET efficiency in vivo. Use of red-shifted donors and acceptors gave spectra with less endogenous fluorescence but produced lower FRET efficiency, possibly caused by reduced quenching of red-shifted fluorophores in cells. Additionally, cryptic interactions between jellyfish FPs artefactually increased the apparent FRET efficiency. Our protocol can distinguish specific and nonspecific protein interactions even within highly constrained environments as plasma membranes. Overall, accurate FRET estimations in cells or within complex environments can be obtained by a combination of proper data analysis, study of sufficient numbers of cells, and use of properly empirically developed fluorescent proteins.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Janus Quinases/análise , Receptores de Interferon/análise , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Interferon gama/metabolismo , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos , Complexos Multiproteicos , Receptores de Interferon/metabolismo , Coloração e Rotulagem , Receptor de Interferon gama , Proteína Vermelha Fluorescente
3.
Cytokine ; 56(2): 282-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21856167

RESUMO

Vertebrates have multiple genes encoding Type I interferons (IFN), for reasons that are not fully understood. The Type I IFN appear to bind to the same heterodimeric receptor and the subtypes have been shown to have different potencies in various experimental systems. To put this concept on a quantitative basis, we have determined the binding affinities and rate constants of 12 human Alpha-IFN subtypes to isolated interferon receptor chains 1 and 2. Alpha-IFNs bind IFNAR1 and IFNAR2 at affinities of 0.5-5 µM and 0.4-5 nM respectively (except for IFN-alpha1 - 220 nM). Additionally we have examined the biological activity of these molecules in several antiviral and antiproliferative models. Particularly for antiproliferative potency, the binding affinity and activity correlate. However, the EC50 values differ significantly (1.5 nM versus 0.1 nM for IFN-alpha2 in WISH versus OVCAR cells). For antiviral potency, there are several instances where the relationship appears to be more complicated than simple binding. These results will serve as a point of reference for further understanding of this multiple ligand/receptor system.


Assuntos
Interferon-alfa/metabolismo , Receptores de Interferon/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Interferon-alfa/química , Interferon-alfa/classificação , Dados de Sequência Molecular , Ligação Proteica , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...