Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 20(5): 2662-2672, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33650863

RESUMO

The glycoprotein uromodulin (UMOD) is the most abundant protein in urine, and N-glycans are critical for many biological functions of UMOD. Comprehensive glycan profiling of UMOD provides valuable information to understand the exact mechanisms of glycan-regulated functions. To perform comprehensive glycosylation analysis of UMOD from urine samples with limited volumes, we developed a streamlined workflow that included UMOD isolation from 5 mL of urine from 6 healthy adult donors (3 males and 3 females) and a glycosylation analysis using a highly sensitive and reproducible nanoLC-MS/MS based glycomics approach. In total, 212 N-glycan compositions were identified from the purified UMOD, and 17% were high-mannose glycans, 2% were afucosylated/asialylated, 3% were neutral fucosylated, 28% were sialylated (with no fucose), 46% were fucosylated and sialylated, and 4% were sulfated. We found that isolation of UMOD resulted in a significant decrease in the relative quantity of high-mannose and sulfated glycans with a significant increase of neutral fucosylated glycans in the UMOD-depleted urine relative to the undepleted urine, but depletion had little impact on the sialylated glycans. To our knowledge, this is the first study to perform comprehensive N-glycan profiling of UMOD using nanoLC-MS/MS. This analytical workflow would be very beneficial for studies with limited sample size, such as pediatric studies, and can be applied to larger patient cohorts not only for UMOD interrogation but also for global glycan analysis.


Assuntos
Glicômica , Espectrometria de Massas em Tandem , Adulto , Criança , Feminino , Glicosilação , Humanos , Masculino , Polissacarídeos , Uromodulina
2.
Mol Cell Proteomics ; 19(11): 1767-1776, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32737218

RESUMO

We performed an in-depth characterization and comparison of the pediatric and adult urinary glycomes using a nanoLC-MS/MS based glycomics method, which included normal healthy pediatric (1-10 years, n = 21) and adult (21-50 years, n = 22) individuals. A total of 116 N-glycan compositions were identified, and 46 of them could be reproducibly quantified. We performed quantitative comparisons of the 46 glycan compositions between different age and sex groups. The results showed significant quantitative changes between the pediatric and adult cohorts. The pediatric urinary N-glycome was found to contain a higher level of high-mannose (HM), asialylated/afucosylated glycans (excluding HM), neutral fucosylated and agalactosylated glycans, and a lower level of trisialylated glycans compared with the adult. We further analyzed gender-associated glycan changes in the pediatric and adult group, respectively. In the pediatric group, there was almost no difference of glycan levels between males and females. In adult, the majority of glycans were more abundant in males than females, except the high-mannose and tetrasialylated glycans. These findings highlight the importance to consider age-matching and adult sex-matching for urinary glycan studies. The identified normal pediatric and adult urinary glycomes can serve as a baseline reference for comparisons to other disease states affected by glycosylation.


Assuntos
Glicômica/métodos , Polissacarídeos/análise , Polissacarídeos/urina , Espectrometria de Massas em Tandem/métodos , Adulto , Criança , Pré-Escolar , Cromatografia Líquida , Estudos de Coortes , Feminino , Fucose/urina , Glicosilação , Humanos , Lactente , Masculino , Manose/metabolismo , Pessoa de Meia-Idade
3.
Mol Cell Proteomics ; 19(3): 456-466, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31896675

RESUMO

Recurrent urinary tract infections (UTIs) pose a significant burden on the health care system. Underlying mechanisms predisposing children to UTIs and associated changes in the urinary proteome are not well understood. We aimed to investigate the urinary proteome of a subset of children who have vesicoureteral reflux (VUR) and recurrent UTIs because of their risk of developing infection-related renal damage. Improving diagnostic modalities to identify UTI risk factors would significantly alter the clinical management of children with VUR. We profiled the urinary proteomes of 22 VUR patients with low grade VUR (1-3 out of 5), a history of recurrent UTIs, and renal scarring, comparing them to those obtained from 22 age-matched controls. Urinary proteins were analyzed by mass spectrometry followed by protein quantitation based on spectral counting. Of the 2,551 proteins identified across both cohorts, 964 were robustly quantified, as defined by meeting criteria with spectral count (SC) ≥2 in at least 7 patients in either VUR or control cohort. Eighty proteins had differential expression between the two cohorts, with 44 proteins significantly up-regulated and 36 downregulated (q <0.075, FC ≥1.2). Urinary proteins involved in inflammation, acute phase response (APR), modulation of extracellular matrix (ECM), and carbohydrate metabolism were altered among the study cohort.


Assuntos
Proteoma , Infecções Urinárias/urina , Refluxo Vesicoureteral/urina , Feminino , Humanos , Masculino , Peptídeos/urina , Projetos Piloto , Recidiva , Infecções Urinárias/metabolismo , Urina/química , Refluxo Vesicoureteral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...