Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 7(1)2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29509667

RESUMO

Streptococcus pneumoniae serotype 1 is the first cause of pneumococcal meningitis Niger. To determine the underlying mechanism of resistance to tetracycline in serotype 1 Streptococcus pneumoniae, a collection of 37 isolates recovered from meningitis patients over the period of 2002 to 2009 in Niger were analyzed for drug susceptibility, and whole genome sequencing (WGS) was performed for molecular analyses. MIC level was determined for 31/37 (83.8%) isolates and allowed detection of full resistance (MIC = 8 µg) in 24/31 (77.4%) isolates. No resistance was found to macrolides and quinolones. Sequence-types deduced from WGS were ST217 (54.1%), ST303 (35.1%), ST2206 (5.4%), ST2839 (2.7%) and one undetermined ST (2.7%). All tetracycline resistant isolates carried a Tn5253 like element, which was found to be an association of two smaller transposons of Tn916 and Tn5252 families. No tet(O) and tet(Q) genes were detected. However, a tet(M) like sequence was identified in all Tn5253 positive strains and was found associated to Tn916 composite. Only one isolate was phenotypically resistant to chloramphenicol, wherein a chloramphenicol acetyl transferase (cat) gene sequence homologous to catpC194 from the Staphylococcus aureus plasmid pC194 was detected. In conclusion, clinical Streptococcus pneumoniae type 1 isolated during 2002 to 2009 meningitis surveillance in Niger were fully susceptible to macrolides and quinolones but highly resistant to tetracycline (77.4%) through acquisition of a defective Tn5253 like element composed of Tn5252 and Tn916 transposons. Of the 31 tested isolates, only one was exceptionally resistant to chloramphenicol and carried a Tn5253 transposon that contained cat gene sequence.

2.
Front Microbiol ; 8: 899, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588566

RESUMO

Severe acute malnutrition is the world-leading cause of children under-five's death. Recent metagenomics studies have established a link between gut microbiota and severe acute malnutrition, describing an immaturity with a striking depletion in oxygen-sensitive prokaryotes. Amoxicillin and therapeutic diet cure most of the children with severe acute malnutrition but an irreversible disruption of the gut microbiota is suspected in the refractory and most severe cases. In these cases, therapeutic diet may be unable to reverse the microbiota alteration leading to persistent impaired development or death. In addition, as enteric sepsis is a major cause of death in this context, identification of missing gut microbes to be tested as probiotics (live bacteria that confer a benefit to the host) to restore rapidly the healthy gut microbiota and prevent the gut pathogenic invasion is of foremost importance. In this study, stool samples of malnourished patients with kwashiorkor and healthy children were collected from Niger and Senegal and analyzed by culturomics and metagenomics. We found a globally decreased diversity, a decrease in the hitherto unknown diversity (new species isolation), a depletion in oxygen-sensitive prokaryotes including Methanobrevibacter smithii and an enrichment in potentially pathogenic Proteobacteria, Fusobacteria and Streptococcus gallolyticus. A complex of 12 species identified only in healthy children using culturomics and metagenomics were identified as probiotics candidates, providing a possible, defined, reproducible, safe, and convenient alternative to fecal transplantation to restore a healthy gut microbiota in malnourished children. Microbiotherapy based on selected strains has the potential to improve the current treatment of severe acute malnutrition and prevent relapse and death by reestablishing a healthy gut microbiota.

3.
PLoS One ; 12(1): e0169547, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28103262

RESUMO

BACKGROUND: To mitigate the burden of pneumococcal infections in Niger, a 13-valent pneumococcal vaccine, PCV13, was introduced for routine child vaccination in July 2014. In order to provide pre-vaccine baseline data and allow appreciation of changes on carriage due to vaccination, we analyzed retrospectively pneumococcal isolates obtained from healthy, 0 to 2 year old children prior to the vaccine introduction. METHODS: From June 5, 2007, to May 26, 2008, 1200 nasopharyngeal swabs were collected from healthy 0 to 2 year old children and analyzed by standard microbiological methods. Serotyping was done by SM-PCR and the data were analyzed with R version 2.15.0 (2012-03-30). RESULTS: Streptococcus pneumoniae was detected in 654/1200 children (54.5%) among whom 339 (51.8%) were males. The ages of the study subjects varied from few days to 26 months (mean = 7.1, median = 6, 95% CI [6.8-7.4]). Out of 654 frozen isolates, 377 (54.8%) were able to be re-grown and analyzed. In total, 32 different serogroups/serotypes were detected of which, the most prevalent were 6/(6A/6B/6C/6D) (15.6%), 23F (10.6%), 19F (9.3%), 14 (9%), 19A (5.6%), 23B (4.0%), 25F/38 (3.7%), 18/(18A/18B/18C/18F) (2.9%) and PCR non-typeable (16.4%). Eleven serogroups/serotypes accounting for 57.3% (216/377) were of PCV13 types. Of the 211/377 (56%) isolates tested for drug sensitivity, 23/211 (10.9%), 24/211 (11.4%), 9/211(4.3%) and 148/210 (70.5%) were respectively resistance to oxacillin, chloramphenicol, erythromycin and tetracycline. Thirteen of the oxacillin resistant isolates were additionally multidrug-resistant. No resistance was however detected to gentamycin500µg and to fluoroquinolones (ø Norfloxacin5µg <7mm). Age > 3 months and presence in family of more than one sibling aged < 6 years were significant risk factors for carriage. CONCLUSION: A global rate of 54.5% pneumococcal carriage was detected in this study. The introduced PCV13 vaccine should cover 57.3% (216/377) of circulating serogroups/serotypes, among which were those resistant to antibiotics. Age > 3 months and presence in family of children aged < 6 years were significant factors for pneumococcal carriage. The present data should help understanding post vaccine introduction changes in pneumococcal carriage and infections for better action.


Assuntos
Portador Sadio/microbiologia , Infecções Pneumocócicas/prevenção & controle , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/efeitos dos fármacos , Portador Sadio/epidemiologia , Portador Sadio/prevenção & controle , Pré-Escolar , Farmacorresistência Bacteriana , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Nasofaringe/microbiologia , Níger/epidemiologia , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/microbiologia , Vacinas Pneumocócicas/farmacologia , Estudos Retrospectivos , Sorogrupo , Streptococcus pneumoniae/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...