Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Cell Rep ; 43(7): 114384, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38970790

RESUMO

Microbial plant pathogens deploy amphipathic cyclic lipopeptides to reduce surface tension in their environment. While plants can detect these molecules to activate cellular stress responses, the role of these lipopeptides or associated host responses in pathogenesis are not fully clear. The gramillin cyclic lipopeptide is produced by the Fusarium graminearum fungus and is a virulence factor and toxin in maize. Here, we show that gramillin promotes virulence and necrosis in both monocots and dicots by disrupting ion balance across membranes. Gramillin is a cation-conducting ionophore and causes plasma membrane depolarization. This disruption triggers cellular signaling, including a burst of reactive oxygen species (ROS), transcriptional reprogramming, and callose production. Gramillin-induced ROS depends on expression of host ILK1 and RBOHD genes, which promote fungal induction of virulence genes during infection and host susceptibility. We conclude that gramillin's ionophore activity targets plant membranes to coordinate attack by the F. graminearum fungus.

2.
Viruses ; 16(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38932212

RESUMO

Oncolytic virotherapy, using viruses such as vesicular stomatitis virus (VSVΔ51) and Herpes Simplex Virus-1 (HSV-1) to selectively attack cancer cells, faces challenges such as cellular resistance mediated by the interferon (IFN) response. Dimethyl fumarate (DMF) is used in the treatment of multiple sclerosis and psoriasis and is recognized for its anti-cancer properties and has been shown to enhance both VSVΔ51 and HSV-1 oncolytic activity. Tepilamide fumarate (TPF) is a DMF analog currently undergoing clinical trials for the treatment of moderate-to-severe plaque psoriasis. The aim of this study was to evaluate the potential of TPF in enhancing the effectiveness of oncolytic viruses. In vitro, TPF treatment rendered 786-0 carcinoma cells more susceptible to VSVΔ51 infection, leading to increased viral replication. It outperformed DMF in both increasing viral infection and increasing the killing of these resistant cancer cells and other cancer cell lines tested. Ex vivo studies demonstrated TPF's selective boosting of oncolytic virus infection in cancer cells without affecting healthy tissues. Effectiveness was notably high in pancreatic and ovarian tumor samples. Our study further indicates that TPF can downregulate the IFN pathway through a similar mechanism to DMF, making resistant cancer cells more vulnerable to viral infection. Furthermore, TPF's impact on gene therapy was assessed, revealing its ability to enhance the transduction efficiency of vectors such as lentivirus, adenovirus type 5, and adeno-associated virus type 2 across various cell lines. This data underscore TPF's potential role in not only oncolytic virotherapy but also in the broader application of gene therapy. Collectively, these findings position TPF as a promising agent in oncolytic virotherapy, warranting further exploration of its therapeutic potential.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Replicação Viral , Humanos , Terapia Viral Oncolítica/métodos , Linhagem Celular Tumoral , Vírus Oncolíticos/fisiologia , Replicação Viral/efeitos dos fármacos , Fumaratos/farmacologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Fumarato de Dimetilo/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia
3.
Nat Commun ; 15(1): 4096, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750019

RESUMO

The presence of heterogeneity in responses to oncolytic virotherapy poses a barrier to clinical effectiveness, as resistance to this treatment can occur through the inhibition of viral spread within the tumor, potentially leading to treatment failures. Here we show that 4-octyl itaconate (4-OI), a chemical derivative of the Krebs cycle-derived metabolite itaconate, enhances oncolytic virotherapy with VSVΔ51 in various models including human and murine resistant cancer cell lines, three-dimensional (3D) patient-derived colon tumoroids and organotypic brain tumor slices. Furthermore, 4-OI in combination with VSVΔ51 improves therapeutic outcomes in a resistant murine colon tumor model. Mechanistically, we find that 4-OI suppresses antiviral immunity in cancer cells through the modification of cysteine residues in MAVS and IKKß independently of the NRF2/KEAP1 axis. We propose that the combination of a metabolite-derived drug with an oncolytic virus agent can greatly improve anticancer therapeutic outcomes by direct interference with the type I IFN and NF-κB-mediated antiviral responses.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Succinatos , Animais , Humanos , Terapia Viral Oncolítica/métodos , Succinatos/farmacologia , Camundongos , Linhagem Celular Tumoral , Interferon Tipo I/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias do Colo/terapia , Neoplasias do Colo/imunologia , Neoplasias do Colo/tratamento farmacológico , Antivirais/farmacologia , NF-kappa B/metabolismo , Quinase I-kappa B/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Inflamação/tratamento farmacológico , Feminino , Vírus da Estomatite Vesicular Indiana/fisiologia , Vírus da Estomatite Vesicular Indiana/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
4.
Sci Rep ; 14(1): 11254, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755218

RESUMO

Dedifferentiated liposarcoma (DDLS) is an aggressive, recurring sarcoma with limited treatments. T-cell immunotherapies selectively target malignant cells, holding promise against DDLS. The development of successful immunotherapy for DDLS requires a thorough evaluation of the tumor immune microenvironment and the identification and characterization of targetable immunogenic tumor antigens. To assess the complexity of the human DDLS tumor immune microenvironment and to identify target antigens, we used the nCounter NanoString platform, analyzing gene expression profiles across 29 DDLS and 10 healthy adipose tissue samples. Hierarchical clustering of tumors based on expression of tumor inflammation signature genes revealed two distinct groups, consisting of 15 inflamed tumors and 14 non-inflamed tumors, demonstrating tumor heterogeneity within this sarcoma subtype. Among the identified antigens, PBK and TTK exhibited substantial upregulation in mRNA expression compared to healthy adipose tissue controls, further corroborated by positive protein expression by IHC. This data shows considerable inter-tumoral heterogeneity of inflammation, which should be taken into consideration when designing an immunotherapy for DDLS, and provides a novel targetable antigen in DDLS. The results of this study lay the groundwork for the development of a novel immunotherapy for this highly aggressive sarcoma.


Assuntos
Antígenos de Neoplasias , Imunoterapia , Lipossarcoma , Humanos , Lipossarcoma/imunologia , Lipossarcoma/genética , Lipossarcoma/terapia , Lipossarcoma/patologia , Imunoterapia/métodos , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Microambiente Tumoral/imunologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Adulto
5.
J Am Soc Mass Spectrom ; 34(12): 2722-2730, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37929927

RESUMO

13C-Trimethylation enhancement using diazomethane (13C-TrEnDi) is a chemical derivatization technique that uses 13C-labeled diazomethane to increase mass spectrometry (MS) signal intensities for phosphatidylcholine (PC) and phosphatidylethanolamine (PE) lipid classes, both of which are of major interest in biochemistry. In silico mass spectrometry databases have become mainstays in lipidomics experiments; however, 13C-TrEnDi-modified PC and PE species have altered m/z and fragmentation patterns from their native counterparts. To build a database of 13C-TrEnDi-modified PC and PE species, a lipid extract from nutritional yeast was derivatized and fragmentation spectra of modified PC and PE species were mined using diagnostic fragmentation filtering by searching 13C-TrEnDi-modified headgroups with m/z 199 (PC) and 202 (PE). Identities of 25 PC and 10 PE species were assigned after comparing to predicted masses from the Lipid Maps Structure Database with no false positive identifications observed; neutral lipids could still be annotated after derivatization. Collision energies from 16 to 52 eV were examined, resulting in three additional class-specific fragment ions emerging, as well as a combined sn-1/sn-2 fragment ion, allowing sum-composition level annotations to be assigned. Using the Lipid Blast templates, a NIST-compatible 13C-TrEnDi database was produced based on fragmentation spectra observed at 36 eV and tested on HEK 293T cell lipid extracts, identifying 47 PC and 24 PE species, representing a 1.8-fold and 2.2-fold increase in annotations, respectively. The 13C-TrEnDi database is freely available, MS vendor-independent, and widely compatible with MS data processing pipelines, increasing the throughput and accessibility of TrEnDi for lipidomics applications.


Assuntos
Diazometano , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Diazometano/química , Fosfatidilcolinas/química
6.
Mol Ther Methods Clin Dev ; 31: 101110, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37822719

RESUMO

SARS-CoV-2, the etiological agent behind the coronavirus disease 2019 (COVID-19) pandemic, has continued to mutate and create new variants with increased resistance against the WHO-approved spike-based vaccines. With a significant portion of the worldwide population still unvaccinated and with waning immunity against newly emerging variants, there is a pressing need to develop novel vaccines that provide broader and longer-lasting protection. To generate broader protective immunity against COVID-19, we developed our second-generation vaccinia virus-based COVID-19 vaccine, TOH-VAC-2, encoded with modified versions of the spike (S) and nucleocapsid (N) proteins as well as a unique poly-epitope antigen that contains immunodominant T cell epitopes from seven different SARS-CoV-2 proteins. We show that the poly-epitope antigen restimulates T cells from the PBMCs of individuals formerly infected with SARS-CoV-2. In mice, TOH-VAC-2 vaccination produces high titers of S- and N-specific antibodies and generates robust T cell immunity against S, N, and poly-epitope antigens. The immunity generated from TOH-VAC-2 is also capable of protecting mice from heterologous challenge with recombinant VSV viruses that express the same SARS-CoV-2 antigens. Altogether, these findings demonstrate the effectiveness of our versatile vaccine platform as an alternative or complementary approach to current vaccines.

7.
Mol Ther ; 31(11): 3127-3145, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37735876

RESUMO

In recent years, there has been a surge in the innovative modification and application of the viral vector-based gene therapy field. Significant and consistent improvements in the engineering, delivery, and safety of viral vectors have set the stage for their application as RNA interference (RNAi) delivery tools. Viral vector-based delivery of RNAi has made remarkable breakthroughs in the treatment of several debilitating diseases and disorders (e.g., neurological diseases); however, their novelty has yet to be fully applied and utilized for the treatment of cancer. This review highlights the most promising and emerging viral vector delivery tools for RNAi therapeutics while discussing the variables limiting their success and suitability for cancer therapy. Specifically, we outline different integrating and non-integrating viral platforms used for gene delivery, currently employed RNAi targets for anti-cancer effect, and various strategies used to optimize the safety and efficacy of these RNAi therapeutics. Most importantly, we provide great insight into what challenges exist in their application as cancer therapeutics and how these challenges can be effectively navigated to advance the field.


Assuntos
Vetores Genéticos , Neoplasias , Interferência de RNA , Vetores Genéticos/genética , Terapia Genética , Técnicas de Transferência de Genes , Neoplasias/genética , Neoplasias/terapia
8.
Mol Ther ; 31(11): 3176-3192, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37766429

RESUMO

The clinical efficacy of VSVΔ51 oncolytic virotherapy has been limited by tumor resistance to viral infection, so strategies to transiently repress antiviral defenses are warranted. Pevonedistat is a first-in-class NEDD8-activating enzyme (NAE) inhibitor currently being tested in clinical trials for its antitumor potential. In this study, we demonstrate that pevonedistat sensitizes human and murine cancer cells to increase oncolytic VSVΔ51 infection, increase tumor cell death, and improve therapeutic outcomes in resistant syngeneic murine cancer models. Increased VSVΔ51 infectivity was also observed in clinical human tumor samples. We further identify the mechanism of this effect to operate via blockade of the type 1 interferon (IFN-1) response through neddylation-dependent interferon-stimulated growth factor 3 (ISGF3) repression and neddylation-independent inhibition of NF-κB nuclear translocation. Together, our results identify a role for neddylation in regulating the innate immune response and demonstrate that pevonedistat can improve the therapeutic outcomes of strategies using oncolytic virotherapy.


Assuntos
Inibidores Enzimáticos , Proteína NEDD8 , Neoplasias , Terapia Viral Oncolítica , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Interferons , Proteína NEDD8/antagonistas & inibidores , Proteína NEDD8/genética , Neoplasias/tratamento farmacológico
9.
Front Immunol ; 14: 1181014, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153626

RESUMO

Background: Established mouse models of HER2+ cancer are based on the over-expression of rodent Neu/Erbb2 homologues, which are incompatible with human HER2 (huHER2) targeted therapeutics. Additionally, the use of immune-deficient xenograft or transgenic models precludes assessment of native anti-tumour immune responses. These hurdles have been a challenge for our understanding of the immune mechanisms behind huHER2-targeting immunotherapies. Methods: To assess the immune impacts of our huHER2-targeted combination strategy, we generated a syngeneic mouse model of huHER2+ breast cancer, using a truncated form of huHER2, HER2T. Following validation of this model, we next treated tumour-bearing with our immunotherapy strategy: oncolytic vesicular stomatitis virus (VSVΔ51) with clinically approved antibody-drug conjugate targeting huHER2, trastuzumab emtansine (T-DM1). We assessed efficacy through tumour control, survival, and immune analyses. Results: The generated truncated HER2T construct was non-immunogenic in wildtype BALB/c mice upon expression in murine mammary carcinoma 4T1.2 cells. Treatment of 4T1.2-HER2T tumours with VSVΔ51+T-DM1 yielded robust curative efficacy compared to controls, and broad immunologic memory. Interrogation of anti-tumour immunity revealed tumour infiltration by CD4+ T cells, and activation of B, NK, and dendritic cell responses, as well as tumour-reactive serum IgG. Conclusions: The 4T1.2-HER2T model was used to evaluate the anti-tumour immune responses following our complex pharmacoviral treatment strategy. These data demonstrate utility of the syngeneic HER2T model for assessment of huHER2-targeted therapies in an immune-competent in vivo setting. We further demonstrated that HER2T can be implemented in multiple other syngeneic tumour models, including but not limited to colorectal and ovarian models. These data also suggest that the HER2T platform may be used to assess a range of surface-HER2T targeting approaches, such as CAR-T, T-cell engagers, antibodies, or even retargeted oncolytic viruses.


Assuntos
Neoplasias da Mama , Rhabdoviridae , Humanos , Camundongos , Animais , Feminino , Ado-Trastuzumab Emtansina/uso terapêutico , Neoplasias da Mama/metabolismo , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Modelos Animais de Doenças
10.
Pharmaceuticals (Basel) ; 16(5)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37242495

RESUMO

The approval of different cytokines as anti-neoplastic agents has been challenged by dose-limiting toxicities. Although reducing dose levels affords improved tolerability, efficacy is precluded at these suboptimal doses. Strategies combining cytokines with oncolytic viruses have proven to elicit potent survival benefits in vivo, despite promoting rapid clearance of the oncolytic virus itself. Herein, we developed an inducible expression system based on a Split-T7 RNA polymerase for oncolytic poxviruses to regulate the spatial and temporal expression of a beneficial transgene. This expression system utilizes approved anti-neoplastic rapamycin analogues for transgene induction. This treatment regimen thus offers a triple anti-tumour effect through the oncolytic virus, the induced transgene, and the pharmacologic inducer itself. More specifically, we designed our therapeutic transgene by fusing a tumour-targeting chlorotoxin (CLTX) peptide to interleukin-12 (IL-12), and demonstrated that the constructs were functional and cancer-selective. We next encoded this construct into the oncolytic vaccinia virus strain Copenhagen (VV-iIL-12mCLTX), and were able to demonstrate significantly improved survival in multiple syngeneic murine tumour models through both localized and systemic virus administration, in combination with rapalogs. In summary, our findings demonstrate that rapalog-inducible genetic switches based on Split-T7 polymerase allow for regulation of the oncolytic virus-driven production of tumour-localized IL-12 for improved anti-cancer immunotherapy.

11.
Sci Rep ; 13(1): 3347, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849805

RESUMO

We conducted a systematic review and meta-analysis of randomized control trials to formally assess the safety and efficacy of autologous whole cell vaccines as immunotherapies for solid tumors. Our primary safety outcome was number, and grade of adverse events. Our primary efficacy outcome was clinical responses. Secondary outcomes included survival metrics and correlative immune assays. We searched MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials for studies published between 1946 and August 2020 using any autologous whole cell product in the treatment of any solid tumor. The Cochrane Randomized Controlled Trial risk of bias tool was used to assess risk of bias. Eighteen manuscripts were identified with a total of 714 patients enrolled in control and 808 in vaccine arms. In 698 patients receiving at least one dose of vaccine, treatment was well tolerated with a total of 5 grade III or higher adverse events. Clinical response was reported in a minority (n = 2, 14%) of studies. Autologous cell vaccines were associated with improved overall (HR 1.28, 95% CI 1.01-1.63) and disease-free survival (HR 1.33, 95% CI 1.05-1.67) over thirteen and ten trials respectively. Where reported, immune assays correlated well with clinical outcomes. Our results suggest that autologous whole cell vaccination is safe and efficacious in increasing survival in patients undergoing treatment for solid tumors.Registration: PROSPERO CRD42019140187.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Vacinas Anticâncer/efeitos adversos , Imunoterapia , Neoplasias/terapia
12.
J Biomed Mater Res B Appl Biomater ; 111(5): 1133-1141, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36632686

RESUMO

There is controversial clinical evidence regarding the added antibacterial benefit of locally administering antiseptic solutions or antibiotics to the infected joint space. The objectives of this in vitro study were to test the efficacy of povidone-iodine (PVP-I) and vancomycin in treating premature and developed Staphylococcus aureus biofilms grown on titanium implant surfaces. PVP-I and vancomycin were used to treat immature and developed biofilms formed by two clinical strains of S. aureus (BP043-MRSA, PB011-MSSA). S. aureus strains were grown as immature (3 h-old) or developed (24 h-old) biofilm. These biofilms were grown on titanium plasma sprayed discs. The treatment regimens tested were: 0.8% PVP-I, 500 µg/ml vancomycin as well as a combination of vancomycin and PVP-I. PVP-I was tested at 3 min, as per current clinical practice, versus 1 min treatment times. In addition, the cytotoxicity of the PVP-I and vancomycin was tested using fresh skeletal muscle tissue cores harvested from the rat's abdominal muscles using alamarBlue assay. The combination of PVP-I (3 min) and vancomycin (24 h.) showed synergistic interaction and the best efficacy against immature biofilms formed by both clinical strains. This degree of eradication was statistically significant compared to the untreated control, p < .0001. However, this combination therapy had limited efficiency against developed biofilms. Also, PVP-I alone was more effective when exposure time was 3 min instead of 1 min against immature biofilm for MRSA, p = .02, and MSSA, p = .01. PVP-I and vancomycin were not effective against developed biofilm regardless of exposure time. Also, combining PVP-I and vancomycin was not cytotoxic to muscle tissue. Combining PVP-I with vancomycin is superior in reducing viable S. aureus cells in immature biofilms grown on titanium surface without causing significant cytotoxicity to muscle tissue. Exposure times and biofilm maturity play a role in dictating the efficacy of using local antiseptics and antibiotics to treat biofilms on implant surfaces.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Animais , Ratos , Vancomicina/farmacologia , Povidona-Iodo/farmacologia , Staphylococcus aureus , Meticilina , Titânio/farmacologia , Antibacterianos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana
13.
Front Immunol ; 14: 1332929, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38169670

RESUMO

Immunotherapy and specifically oncolytic virotherapy has emerged as a promising option for cancer patients, with oncolytic herpes simplex virus-1 (oHSV-1) expressing granulocyte macrophage colony stimulating factor being the first OV to be approved by the FDA for treatment of melanoma. However, not all cancers are sensitive and responsive to oncolytic viruses (OVs). Our group has demonstrated that fumaric and maleic acid esters (FMAEs) are very effective in sensitizing cancer cells to OV infection. Of note, these FMAEs include dimethyl fumarate (DMF, also known as Tecfidera®), an approved treatment for multiple sclerosis and psoriasis. This study aimed to assess the efficacy of DMF in combination with oncolytic HSV-1 in preclinical cancer models. We demonstrate herewith that pre-treatment with DMF or other FMAEs leads to a significant increase in viral growth of oHSV-1 in several cancer cell lines, including melanoma, while decreasing cell viability. Additionally, DMF was able to enhance ex vivo oHSV-1 infection of mouse-derived tumor cores as well as human patient tumor samples but not normal tissue. We further reveal that the increased viral spread and oncolysis of the combination therapy occurs via inhibition of type I IFN production and response. Finally, we demonstrate that DMF in combination with oHSV-1 can improve therapeutic outcomes in aggressive syngeneic murine cancer models. In sum, this study demonstrates the synergistic potential of two approved therapies for clinical evaluation in cancer patients.


Assuntos
Herpesvirus Humano 1 , Melanoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Animais , Camundongos , Fumarato de Dimetilo/farmacologia , Vírus Oncolíticos/fisiologia , Fumaratos/farmacologia
14.
Front Immunol ; 13: 1032356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532027

RESUMO

Oncolytic viruses (OVs) are promising anticancer treatments that specifically replicate in and kill cancer cells and have profound immunostimulatory effects. We previously reported the potential of vanadium-based compounds such as vanadyl sulfate (VS) as immunostimulatory enhancers of OV immunotherapy. These compounds, in conjunction with RNA-based OVs such as oncolytic vesicular stomatitis virus (VSVΔ51), improve viral spread and oncolysis, leading to long-term antitumor immunity and prolonged survival in resistant tumor models. This effect is associated with a virus-induced antiviral type I IFN response shifting towards a type II IFN response in the presence of vanadium. Here, we investigated the systemic impact of VS+VSVΔ51 combination therapy to understand the immunological mechanism of action leading to improved antitumor responses. VS+VSVΔ51 combination therapy significantly increased the levels of IFN-γ and IL-6, and improved tumor antigen-specific T-cell responses. Supported by immunological profiling and as a proof of concept for the design of more effective therapeutic regimens, we found that local delivery of IL-12 using VSVΔ51 in combination with VS further improved therapeutic outcomes in a syngeneic CT26WT colon cancer model.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Citocinas , Vanádio , Imunoterapia , Imunidade , Quimiocinas
15.
Front Immunol ; 13: 1029269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405739

RESUMO

Colorectal cancer is the third most diagnosed cancer and the second leading cause of cancer mortality worldwide, highlighting an urgent need for new therapeutic options and combination strategies for patients. The orchestration of potent T cell responses against human cancers is necessary for effective antitumour immunity. However, regression of a limited number of cancers has been induced by immune checkpoint inhibitors, T cell engagers (TCEs) and/or oncolytic viruses. Although one TCE has been FDA-approved for the treatment of hematological malignancies, many challenges exist for the treatment of solid cancers. Here, we show that TCEs targeting CEACAM5 and CD3 stimulate robust activation of CD4 and CD8-positive T cells in in vitro co-culture models with colorectal cancer cells, but in vivo efficacy is hindered by a lack of TCE retention in the tumour microenvironment and short TCE half-life, as demonstrated by HiBiT bioluminescent TCE-tagging technology. To overcome these limitations, we engineered Bispecific Engager Viruses, or BEVirs, a novel tumour-targeted vaccinia virus platform for intra-tumour delivery of these immunomodulatory molecules. We characterized virus-mediated TCE-secretion, TCE specificity and functionality from infected colorectal cancer cells and patient tumour samples, as well as TCE cytotoxicity in spheroid models, in the presence and absence of T cells. Importantly, we show regression of colorectal tumours in both syngeneic and xenograft mouse models. Our data suggest that a different profile of cytokines may contribute to the pro-inflammatory and immune effects driven by T cells in the tumour microenvironment to provide long-lasting immunity and abscopal effects. We establish combination regimens with immune checkpoint inhibitors for aggressive colorectal peritoneal metastases. We also observe a significant reduction in lung metastases of colorectal tumours through intravenous delivery of our oncolytic virus driven T-cell based combination immunotherapy to target colorectal tumours and FAP-positive stromal cells or CTLA4-positive Treg cells in the tumour microenvironment. In summary, we devised a novel combination strategy for the treatment of colorectal cancers using oncolytic vaccinia virus to enhance immune-payload delivery and boost T cell responses within tumours.


Assuntos
Neoplasias Colorretais , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Camundongos , Animais , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Vaccinia virus , Modelos Animais de Doenças , Neoplasias Colorretais/terapia , Microambiente Tumoral
16.
Cancers (Basel) ; 14(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35740500

RESUMO

Due to their crucial role in tumor immunity, NK cells have quickly became a prime target for immunotherapies, with the adoptive transfer of NK cells and the use of NK cell engagers quickly moving to the clinical stage. On the other hand, only a few studies have focused on small molecule drugs capable of unleashing NK cells against cancer. In this context, repurposing small molecules is an attractive strategy to identify new immunotherapies from already approved drugs. Here, we developed a new platform to screen small molecule compounds based on a high-throughput luciferase-release cytotoxicity assay. We tested 1200 FDA approved drugs from the Prestwick Chemical Library, to identify compounds that increase NK cells' cytotoxic potential. We found that the antibiotic colistin sulfate increased the cytotoxicity of human NK cells towards cancer cells. The effect of colistin was short lived and was not observed when NK cells were pretreated with the drug, showing how NK cell activity was potentiated only when the compound was present at the time of recognition of cancer cells. Further studies are needed to uncover the mechanism of action and the pre-clinical efficacy of colistin sulfate in mouse cancer models.

17.
Mol Ther Oncolytics ; 25: 146-159, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35572196

RESUMO

Oncolytic virotherapy is a clinically validated approach to treat cancers such as melanoma; however, tumor resistance to virus makes its efficacy variable. Compounds such as sodium orthovanadate (vanadate) can overcome viral resistance and synergize with RNA-based oncolytic viruses. In this study, we explored the basis of vanadate mode of action and identified key cellular components in vanadate's oncolytic virus-enhancing mechanism using a high-throughput kinase inhibitor screen. We found that several kinase inhibitors affecting signaling downstream of the epidermal growth factor receptor (EGFR) pathway abrogated the oncolytic virus-enhancing effects of vanadate. EGFR pathway inhibitors such as gefitinib negated vanadate-associated changes in the phosphorylation and localization of STAT1/2 as well as NF-κB signaling. Moreover, gefitinib treatment could abrogate the viral sensitizing response of vanadium compounds in vivo. Together, we demonstrate that EGFR signaling plays an integral role in vanadium viral sensitization and that pharmacological EGFR blockade can counteract vanadium/oncolytic virus combination therapy.

18.
Mol Ther ; 30(9): 2998-3016, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526097

RESUMO

We established a split nanoluciferase complementation assay to rapidly screen for inhibitors that interfere with binding of the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein with its target receptor, angiotensin-converting enzyme 2 (ACE2). After a screen of 1,200 US Food and Drug Administration (FDA)-approved compounds, we identified bifonazole, an imidazole-based antifungal agent, as a competitive inhibitor of RBD-ACE2 binding. Mechanistically, bifonazole binds ACE2 around residue K353, which prevents association with the RBD, affecting entry and replication of spike-pseudotyped viruses as well as native SARS-CoV-2 and its variants of concern (VOCs). Intranasal administration of bifonazole reduces lethality in K18-hACE2 mice challenged with vesicular stomatitis virus (VSV)-spike by 40%, with a similar benefit after live SARS-CoV-2 challenge. Our screen identified an antiviral agent that is effective against SARS-CoV-2 and VOCs such as Omicron that employ the same receptor to infect cells and therefore has high potential to be repurposed to control, treat, or prevent coronavirus disease 2019 (COVID-19).


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Imidazóis , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Animais , Antivirais/farmacologia , Imidazóis/farmacologia , Camundongos , Ligação Proteica , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química , Estados Unidos , United States Food and Drug Administration
19.
Nat Commun ; 13(1): 1898, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393414

RESUMO

Recent advances in cancer therapeutics clearly demonstrate the need for innovative multiplex therapies that attack the tumour on multiple fronts. Oncolytic or "cancer-killing" viruses (OVs) represent up-and-coming multi-mechanistic immunotherapeutic drugs for the treatment of cancer. In this study, we perform an in-vitro screen based on virus-encoded artificial microRNAs (amiRNAs) and find that a unique amiRNA, herein termed amiR-4, confers a replicative advantage to the VSVΔ51 OV platform. Target validation of amiR-4 reveals ARID1A, a protein involved in chromatin remodelling, as an important player in resistance to OV replication. Virus-directed targeting of ARID1A coupled with small-molecule inhibition of the methyltransferase EZH2 leads to the synthetic lethal killing of both infected and uninfected tumour cells. The bystander killing of uninfected cells is mediated by intercellular transfer of extracellular vesicles carrying amiR-4 cargo. Altogether, our findings establish that OVs can serve as replicating vehicles for amiRNA therapeutics with the potential for combination with small molecule and immune checkpoint inhibitor therapy.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , MicroRNAs/genética , Neoplasias/terapia , Vírus Oncolíticos/genética
20.
Mol Ther ; 30(5): 1885-1896, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34687845

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic requires the continued development of safe, long-lasting, and efficacious vaccines for preventive responses to major outbreaks around the world, and especially in isolated and developing countries. To combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we characterize a temperature-stable vaccine candidate (TOH-Vac1) that uses a replication-competent, attenuated vaccinia virus as a vector to express a membrane-tethered spike receptor binding domain (RBD) antigen. We evaluate the effects of dose escalation and administration routes on vaccine safety, efficacy, and immunogenicity in animal models. Our vaccine induces high levels of SARS-CoV-2 neutralizing antibodies and favorable T cell responses, while maintaining an optimal safety profile in mice and cynomolgus macaques. We demonstrate robust immune responses and protective immunity against SARS-CoV-2 variants after only a single dose. Together, these findings support further development of our novel and versatile vaccine platform as an alternative or complementary approach to current vaccines.


Assuntos
COVID-19 , Vacinas , Animais , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Imunidade , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...