Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(3): e0194092, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29543856

RESUMO

Body size governs predator-prey interactions, which in turn structure populations, communities, and food webs. Understanding predator-prey size relationships is valuable from a theoretical perspective, in basic research, and for management applications. However, predator-prey size data are limited and costly to acquire. We quantified predator-prey total length and mass relationships for several freshwater piscivorous taxa: crappie (Pomoxis spp.), largemouth bass (Micropterus salmoides), muskellunge (Esox masquinongy), northern pike (Esox lucius), rock bass (Ambloplites rupestris), smallmouth bass (Micropterus dolomieu), and walleye (Sander vitreus). The range of prey total lengths increased with predator total length. The median and maximum ingested prey total length varied with predator taxon and length, but generally ranged from 10-20% and 32-46% of predator total length, respectively. Predators tended to consume larger fusiform prey than laterally compressed prey. With the exception of large muskellunge, predators most commonly consumed prey between 16 and 73 mm. A sensitivity analysis indicated estimates can be very accurate at sample sizes greater than 1,000 diet items and fairly accurate at sample sizes greater than 100. However, sample sizes less than 50 should be evaluated with caution. Furthermore, median log10 predator-prey body mass ratios ranged from 1.9-2.5, nearly 50% lower than values previously reported for freshwater fishes. Managers, researchers, and modelers could use our findings as a tool for numerous predator-prey evaluations from stocking size optimization to individual-based bioenergetics analyses identifying prey size structure. To this end, we have developed a web-based user interface to maximize the utility of our models that can be found at www.LakeEcologyLab.org/pred_prey.


Assuntos
Tamanho Corporal/fisiologia , Peixes/fisiologia , Comportamento Predatório/fisiologia , Animais , Dieta , Cadeia Alimentar , Água Doce
2.
Ambio ; 46(4): 468-477, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27848102

RESUMO

Globally, blue carbon (i.e., carbon in coastal and marine ecosystems) emissions have been seriously augmented due to the devastating effects of anthropogenic pressures on coastal ecosystems including mangrove swamps, salt marshes, and seagrass meadows. The greening of aquaculture, however, including an ecosystem approach to Integrated Aquaculture-Agriculture (IAA) and Integrated Multi-Trophic Aquaculture (IMTA) could play a significant role in reversing this trend, enhancing coastal ecosystems, and sequestering blue carbon. Ponds within IAA farming systems sequester more carbon per unit area than conventional fish ponds, natural lakes, and inland seas. The translocation of shrimp culture from mangrove swamps to offshore IMTA could reduce mangrove loss, reverse blue carbon emissions, and in turn increase storage of blue carbon through restoration of mangroves. Moreover, offshore IMTA may create a barrier to trawl fishing which in turn could help restore seagrasses and further enhance blue carbon sequestration. Seaweed and shellfish culture within IMTA could also help to sequester more blue carbon. The greening of aquaculture could face several challenges that need to be addressed in order to realize substantial benefits from enhanced blue carbon sequestration and eventually contribute to global climate change mitigation.


Assuntos
Aquicultura/métodos , Sequestro de Carbono , Conservação dos Recursos Naturais , Áreas Alagadas
3.
FEMS Microbiol Ecol ; 83(1): 17-25, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22775980

RESUMO

This study analysed the nitrifier community in the biofilter of a zero discharge, recirculating aquaculture system (RAS) for the production of marine shrimp in a low density (low ammonium production) system. The ammonia-oxidizing populations were examined by targeting 16S rRNA and amoA genes of ammonia-oxidizing bacteria (AOB) and archaea (AOA). The nitrite-oxidizing bacteria (NOB) were investigated by targeting the 16S rRNA gene. Archaeal amoA genes were more abundant in all compartments of the RAS than bacterial amoA genes. Analysis of bacterial and archaeal amoA gene sequences revealed that most ammonia oxidizers were related to Nitrosomonas marina and Nitrosopumilus maritimus. The NOB detected were related to Nitrospira marina and Nitrospira moscoviensis, and Nitrospira marina-type NOB were more abundant than N. moscoviensis-type NOB. Water quality and biofilm attachment media played a role in the competitiveness of AOA over AOB and Nitrospira marina-over N. moscoviensis-type NOB.


Assuntos
Amônia/metabolismo , Aquicultura , Archaea/metabolismo , Bactérias/metabolismo , Nitritos/metabolismo , Animais , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Biofilmes , Filtração , Genes Arqueais , Genes Bacterianos , Nitrificação , Oxirredução , Oxirredutases/genética , Penaeidae , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Qualidade da Água
4.
Environ Sci Technol ; 45(15): 6531-8, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21714571

RESUMO

We conducted surveys of six hatcheries and 18 farms for data inputs to complete a cradle-to-farm-gate life cycle assessment (LCA) to evaluate the environmental performance for intensive (for export markets in Chicago) and semi-intensive (for domestic markets in Shanghai) shrimp farming systems in Hainan Province, China. The relative contribution to overall environmental performance of processing and distribution to final markets were also evaluated from a cradle-to-destination-port perspective. Environmental impact categories included global warming, acidification, eutrophication, cumulative energy use, and biotic resource use. Our results indicated that intensive farming had significantly higher environmental impacts per unit production than semi-intensive farming in all impact categories. The grow-out stage contributed between 96.4% and 99.6% of the cradle-to-farm-gate impacts. These impacts were mainly caused by feed production, electricity use, and farm-level effluents. By averaging over intensive (15%) and semi-intensive (85%) farming systems, 1 metric ton (t) live-weight of shrimp production in China required 38.3 ± 4.3 GJ of energy, as well as 40.4 ± 1.7 t of net primary productivity, and generated 23.1 ± 2.6 kg of SO(2) equiv, 36.9 ± 4.3 kg of PO(4) equiv, and 3.1 ± 0.4 t of CO(2) equiv. Processing made a higher contribution to cradle-to-destination-port impacts than distribution of processed shrimp from farm gate to final markets in both supply chains. In 2008, the estimated total electricity consumption, energy consumption, and greenhouse gas emissions from Chinese white-leg shrimp production would be 1.1 billion kW·h, 49 million GJ, and 4 million metric tons, respectively. Improvements suggested for Chinese shrimp aquaculture include changes in feed composition, farm management, electricity-generating sources, and effluent treatment before discharge. Our results can be used to optimize market-oriented shrimp supply chains and promote more sustainable shrimp production and consumption.


Assuntos
Aquicultura/economia , Aquicultura/métodos , Comércio , Crustáceos/crescimento & desenvolvimento , Meio Ambiente , Animais , Biomassa , Chicago , China
5.
Environ Sci Pollut Res Int ; 14(7): 452-62, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18062476

RESUMO

GOAL, SCOPE AND BACKGROUND: Aquaculture activities are well known to be the major contributor to the increasing level of organic waste and toxic compound in the aquaculture industry. Along with the development of intensive aquaculture in China, concerns are evoked about the possible effects of ever-increasing aquaculture waste both on productivity inside the aquaculture system and on the ambient aquatic ecosystem. Therefore, it is apparent that appropriate waste treatment processes are needed for sustaining aquaculture development. This review aims at identifying the current status of aquaculture and aquaculture waste production in China. MAIN FEATURES: China is the world's largest fishery nation in terms of total seafood production volume, a position it has maintained continuously since 1990. Freshwater aquaculture is a major part of the Chinese fishery industry. Marine aquaculture in China consists of both land-based and offshore aquaculture, with the latter mostly operated in shallow seas, mud flats and protected bays. The environmental impacts of aquaculture are also striking. RESULTS: Case studies on pollution hot spots caused by aquaculture have been introduced. The quality and quantity of waste from aquaculture depends mainly on culture system characteristics and the choice of species, but also on feed quality and management. Wastewater without treatment, if continuously discharged into the aquatic environment, could result in remarkable elevation of the total organic matter contents and cause considerable economy lost. Waste treatments can be mainly classified into three categories: physical, chemical and biological methods. DISCUSSION: The environmental impacts of different aquaculture species are not the same. New waste treatments are introduced as references for the potential development of the waste treatment system in China. The most appropriate waste treatment system for each site should be selected according to the sites' conditions and financial status as well as by weighing the advantages and disadvantages of each system. Strategies and perspectives for sustainable aquaculture development are proposed, with the emphasis on environmental protection. CONCLUSIONS: Negative effects of waste from aquaculture to aquatic environment are increasingly recognized, though they were just a small proportion to land-based pollutants. Properly planned use of aquaculture waste alleviates water pollution problems and not only conserves valuable water resources but also takes advantage of the nutrients contained in effluent. It is highly demanding to develop sustainable aquaculture which keeps stocking density and pollution loadings under environmental capacity. RECOMMENDATIONS AND PERSPECTIVES: The traditional procedures for aquaculture waste treatment, mainly based on physical and chemical means, should be overcome by more site-specific approaches, taking into account the characteristics and resistibility of the aquatic environment. Further research needs to improve or optimize the current methods of wastewater treatment and reuse. Proposed new treatment technology should evaluate their feasibility at a larger scale for practical application.


Assuntos
Aquicultura , Monitoramento Ambiental , Resíduos Industriais/análise , Poluição da Água/análise , China , Resíduos Industriais/legislação & jurisprudência , Água/química , Poluição da Água/legislação & jurisprudência , Purificação da Água
6.
Artigo em Inglês | MEDLINE | ID: mdl-17466553

RESUMO

The purpose of this study was to determine whether diploid, triploid and tetraploid loach (Misgurnus anguillicaudatus) differed in terms of their main haematological and physiological characteristics. Diploid and tetraploid fish were produced by crossing of natural diploids (2n x 2n) and natural tetraploids (4n x 4n), respectively. Triploid fish were produced by hybridization between diploid males and tetraploid females. The blood cells were significantly larger in polyploids, and the volumetric ratios of erythrocytes and leucocytes (thrombocyte and neutrophil) in tetraploids, triploids and diploids were consistent with the ploidy level ratio of 4:3:2. No significant differences were observed in haematocrit among polyploids. The erythrocyte count decreased with increased ploidy level, while total haemoglobin, mean cell volume, mean cellular haemoglobin content, and mean cell haemoglobin concentration all increased with increase in ploidy level. Erythrocyte osmotic brittleness declined in polyploids so that polyploid erythrocytes were more resistant to osmotic stress than diploid ones. Overall, loach with higher ploidy levels showed evidence of some advantages in haematological characteristics.


Assuntos
Cipriniformes/sangue , Cipriniformes/genética , Diploide , Poliploidia , Animais , Contagem de Células Sanguíneas , Plaquetas/citologia , Tamanho Celular , DNA , Eritrócitos/citologia , Feminino , Citometria de Fluxo , Granulócitos/citologia , Hematócrito , Hemoglobinas/análise , Linfócitos/citologia , Masculino , Monócitos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...