Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-453054

RESUMO

SARS-CoV-2 and its variants continue to threaten public health. The virus recognizes the host cell by attaching its Spike receptor-binding domain (RBD) to the host receptor ACE2. Therefore, RBD is a primary target for neutralizing antibodies and vaccines. Here we report the isolation, and biological and structural characterization of two single-chain antibodies (nanobodies, DL4 and DL28) from RBD-immunized alpaca. Both nanobodies bind Spike with affinities that exceeded the detection limit (picomolar) of the biolayer interferometry assay and neutralize the original SARS-CoV- 2 strain with IC50 of 0.086 g mL-1 (DL4) and 0.385 g mL-1 (DL28). DL4 and a more potent, rationally designed mutant, neutralizes the Alpha variant as potently as the original strain but only displays marginal activity against the Beta variant. By contrast, the neutralizing activity of DL28, when in the Fc-fused divalent form, was less affected by the mutations in the Beta variant (IC50 of 0.414 g mL-1 for Alpha, 1.060 g mL-1 for Beta). Crystal structure studies reveal that DL4 blocks ACE2-binding by direct competition, while DL28 neutralizes SARS-CoV-2 by an uncommon mechanism through which DL28 distorts the receptor-binding motif in RBD and hence prevents ACE2-binding. Our work provides two neutralizing nanobodies for potential therapeutic development and reveals an uncommon mechanism to design and screen novel neutralizing antibodies against SARS-CoV-2.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-312595

RESUMO

A key step to the SARS-CoV-2 infection is the attachment of its Spike receptor-binding domain (S RBD) to the host receptor ACE2. Considerable research have been devoted to the development of neutralizing antibodies, including llama-derived single-chain nanobodies, to target the receptor-binding motif (RBM) and to block ACE2-RBD binding. Simple and effective strategies to increase potency are desirable for such studies when antibodies are only modestly effective. Here, we identify and characterize a high-affinity synthetic nanobody (sybody, SR31) as a fusion partner to improve the potency of RBM-antibodies. Crystallographic studies reveal that SR31 binds to RBD at a conserved and greasy site distal to RBM. Although SR31 distorts RBD at the interface, it does not perturb the RBM conformation, hence displaying no neutralizing activities itself. However, fusing SR31 to two modestly neutralizing sybodies dramatically increases their affinity for RBD and neutralization activity against SARS-CoV-2 pseudovirus. Our work presents a tool protein and an efficient strategy to improve nanobody potency.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-143438

RESUMO

SARS-CoV-2, the causative agent of COVID-191, recognizes host cells by attaching its receptor-binding domain (RBD) to the host receptor ACE22-7. Neutralizing antibodies that block RBD-ACE2 interaction have been a major focus for therapeutic development8-18. Llama-derived single-domain antibodies (nanobodies, [~]15 kDa) offer advantages including ease of production and possibility for direct delivery to the lungs by nebulization19, which are attractive features for bio-drugs against the global respiratory disease. Here, we generated 99 synthetic nanobodies (sybodies) by in vitro selection using three libraries. The best sybody, MR3 bound to RBD with high affinity (KD = 1.0 nM) and showed high neutralization activity against SARS-CoV-2 pseudoviruses (IC50 = 0.40 g mL-1). Structural, biochemical, and biological characterization of sybodies suggest a common neutralizing mechanism, in which the RBD-ACE2 interaction is competitively inhibited by sybodies. Various forms of sybodies with improved potency were generated by structure-based design, biparatopic construction, and divalent engineering. Among these, a divalent MR3 conjugated with the albumin-binding domain for prolonged half-life displayed highest potency (IC50 = 12 ng mL-1) and protected mice from live SARS-CoV-2 challenge. Our results pave the way to the development of therapeutic nanobodies against COVID-19 and present a strategy for rapid responses for future outbreaks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...