Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Biochem Mol Toxicol ; 38(2): e23656, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38348717

RESUMO

Exosomes are membrane-enclosed nanovesicles that shuttle active cargoes, such as circular RNAs (circRNAs) and microRNAs (miRNAs), between different cells. Human umbilical cord-derived mesenchymal stem cells (Hu-MSCs) can migrate to tumor sites and exert complex functions throughout tumor progression. In this study, we successfully isolated Hu-MSCs from human umbilical cords based on their surface marker expression. Hu-MSC-derived exosomes significantly reduced the invasion, migration, and proliferation of cholangiocarcinoma (CCA) cells. Furthermore, circ_0037104 was downregulated in CCA and inhibited the proliferation and metastasis of CCA cells. Then, we investigated the effect of Hu-MSC-derived exosomal circ_0037104 on CCA. Circ_0037104 mainly regulates miR-620 and enhances APAF1 expression, inhibiting CCA cell proliferation and metastasis. Overall, Hu-MSC exosomal circ_0037104 contributes to the progression and stemness of CCA cells via miR-620/APAF1. In conclusion, Hu-MSC-derived exosomal circ_0037104 sponges miR-620 directly and negatively targets APAF1 to suppress CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Proliferação de Células , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
2.
Mol Med Rep ; 28(5)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37732553

RESUMO

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that the GAPDH control western blotting data shown in Fig. 1C, and other western blotting data included in Figs. 2D and 7C and D, were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes. Owing to the fact that the contentious data in the above article were already under consideration for publication, or had already been published elsewhere, prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 15: 2074­2082, 2017; DOI: 10.3892/mmr.2017.6257].

3.
J Med Microbiol ; 72(8)2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37526406

RESUMO

Introduction. Caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, coronavirus disease 2019 (COVID-19) has threatened global public health. Immune damage mechanisms are essential guidelines for clinical treatment and immune prevention.Hypothesis. The dysregulated type I interferon (IFN-I) responses, lymphocytopenia and hypercytokinemia during SARS-CoV-2 infection have been reported. However, whether there is a correlation between levels of IFN-I and the severity of COVID-19 has not been reported yet.Aim. To investigate the source of IFN-I and detect the exact roles of them in the pathogenesis of COVID-19.Methodology. Here ELISA was used to detect serum IFN-I (IFN-α and IFN-ß) for 137 cases with laboratory-confirmed COVID-19 admitted into one hospital in Wuhan from December 2019 to March 2020, and the relationships between IFN-α/ß concentrations and patients' clinical parameters were conducted by statistical analysis.Results. Both IFN-α and IFN-ß concentrations dramatically increased in COVID-19 patients, especially in old patients (>80 years) and severe cases. Statistical analysis demonstrated that serum IFN-α/ß concentrations were negatively correlated with the counts of total CD3+T, CD4+ and CD8+T cells, especially in critically ill cases. Moreover, serum IFN-α levels were positively correlated to IL-6 and TNF-α. Finally, immunofluorescent double staining showed that IFN-α and IFN-ß are major secretions from macrophages and dendritic cells (DCs) in lymph nodes from COVID-19 autopsies.Conclusion. These results demonstrate that macrophages and DCs are the main origination of IFN-I, and serum levels of IFN-I are positively associated with lymphopenia and cytokine storm, suggesting that IFN-α/ß deteriorated the severity of COVID-19. Anti-interferon or IFN-I signalling block drugs are needed to treat ICU patients.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , SARS-CoV-2 , Fator de Necrose Tumoral alfa
4.
Front Oncol ; 13: 1109037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397378

RESUMO

Background: Glioblastoma (GBM) is adults' most common and fatally malignant brain tumor. The heterogeneity is the leading cause of treatment failure. However, the relationship between cellular heterogeneity, tumor microenvironment, and GBM progression is still elusive. Methods: Integrated analysis of single-cell RNA sequencing (scRNA-seq) and spatial transcriptome sequencing (stRNA-seq) of GBM were conducted to analyze the spatial tumor microenvironment. We investigated the subpopulation heterogeneity of malignant cells through gene set enrichment analyses, cell communications analyses, and pseudotime analyses. Significantly changed genes of the pseudotime analysis were screened to create a tumor progress-related gene risk score (TPRGRS) using Cox regression algorithms in the bulkRNA-sequencing(bulkRNA-seq) dataset. We combined the TPRGRS and clinical characteristics to predict the prognosis of patients with GBM. Furthermore, functional analysis was applied to uncover the underlying mechanisms of the TPRGRS. Results: GBM cells were accurately charted to their spatial locations and uncovered their spatial colocalization. The malignant cells were divided into five clusters with transcriptional and functional heterogeneity, including unclassified malignant cells and astrocyte-like, mesenchymal-like, oligodendrocytes-progenitor-like, and neural-progenitor-like malignant cells. Cell-cell communications analysis in scRNA-seq and stRNA-seq identified ligand-receptor pairs of the CXCL, EGF, FGF, and MIF signaling pathways as bridges implying that tumor microenvironment may cause malignant cells' transcriptomic adaptability and disease progression. Pseudotime analysis showed the differentiation trajectory of GBM cells from proneural to mesenchymal transition and identified genes or pathways that affect cell differentiation. TPRGRS could successfully divide patients with GBM in three datasets into high- and low-risk groups, which was proved to be a prognostic factor independent of routine clinicopathological characteristics. Functional analysis revealed the TPRGRS associated with growth factor binding, cytokine activity, signaling receptor activator activity functions, and oncogenic pathways. Further analysis revealed the association of the TPRGRS with gene mutations and immunity in GBM. Finally, the external datasets and qRT-PCR verified high expressions of the TPRGRS mRNAs in GBM cells. Conclusion: Our study provides novel insights into heterogeneity in GBM based on scRNA-seq and stRNA-seq data. Moreover, our study proposed a malignant cell transition-based TPRGRS through integrated analysis of bulkRNA-seq and scRNA-seq data, combined with the routine clinicopathological evaluation of tumors, which may provide more personalized drug regimens for GBM patients.

5.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(7): 868-878, 2023 Jul 15.
Artigo em Chinês | MEDLINE | ID: mdl-37460185

RESUMO

Objective: To determine the expression level of Sonic hedgehog (Shh) in the passage of hair follicle stem cells (HFSCs), analyze the effect of Shh overexpression on the proliferation activity of HFSCs, and explore the survival of HFSCs after Shh overexpression and its effect on hair follicle regeneration. Methods: Hair follicles from the normal area (H1 group) and alopecia area (H2 group) of the scalp donated by 20 female alopecia patients aged 40-50 years old were taken, and the middle part of the hair follicle was cut under the microscope to culture, and the primary HFSCs were obtained and passaged; the positive markers (CD29, CD71) and negative marker (CD34) on the surface of the fourth generation HFSCs were identified by flow cytometry. The two groups of HFSCs were transfected with Shh-overexpressed lentivirus. Flow cytometry and cell counting kit 8 assay were used to detect the cell cycle changes and cell proliferation of HFSCs before and after transfection, respectively. Then the HFSCs transfected with Shh lentivirus were transplanted subcutaneously into the back of nude mice as the experimental group, and the same amount of saline was injected as the control group. At 5 weeks after cell transplantation, the expression of Shh protein in the back skin tissue of nude mice was detected by Western blot. HE staining and immunofluorescence staining were used to compare the number of hair follicles and the survival of HFSCs between groups. Results: The isolated and cultured cells were fusiform and firmly attached to the wall; flow cytometry showed that CD29 and CD71 were highly expressed on the surface of the cells, while CD34 was lowly expressed, suggesting that the cultured cells were HFSCs. The results of real-time fluorescence quantitative PCR and Western blot showed that the expression levels of Shh protein and gene in the 4th, 7th, and 10th passages of cells in H1 and H2 groups decreased gradually with the prolongation of culture time in vitro. After overexpression of Shh, the proliferation activity of HFSCs in the two groups was significantly higher than that in the blank group (not transfected with lentivirus) and the negative control group (transfected with negative control lentivirus), and the proliferation activity of HFSCs in H1 group was significantly higher than that in H2 group before and after transfection, showing significant differences ( P<0.05). At 5 weeks after cell transplantation, Shh protein was stably expressed in the dorsal skin of each experimental group; the number of hair follicles and the expression levels of HFSCs markers (CD71, cytokeratin 15) in each experimental group were significantly higher than those in the control group, and the number of hair follicles and the expression levels of HFSCs markers in H1 group were significantly higher than those in H2 group, and the differences were significant ( P<0.05). Conclusion: Lentivirus-mediated Shh can be successfully transfected into HFSCs, the proliferation activity of HFSCs significantly increase after overexpression of Shh, which can secrete and express Shh continuously and stably, and promote hair follicle regeneration by combining the advantages of stem cells and Shh.


Assuntos
Folículo Piloso , Proteínas Hedgehog , Animais , Feminino , Camundongos , Alopecia/metabolismo , Alopecia/cirurgia , Proteínas Hedgehog/genética , Camundongos Nus , Regeneração , Células-Tronco
6.
J Immunol Res ; 2023: 3177584, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215068

RESUMO

Background: Excessive proliferation and activation of B cells, resulting in the production of various autoantibodies, is a crucial link and significant feature of the pathogenesis of systemic lupus erythematosus (SLE), as well as the pathological basis of systemic multiorgan damage. However, whether exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs-Exo) are involved in the immune regulation of SLE has not been clarified. Objectives: Therefore, our study aimed to investigate the efficacy of hucMSCs-Exo for treating SLE. Methods: hucMSCs-Exo and peripheral blood mononuclear cells (PBMCs) of SLE patients were cocultured in vitro, and B cell apoptosis, activation, proliferation, and inflammation levels were detected by flow cytometry. Subsequently, the expression level of miR-155 in B lymphocytes of SLE patients was detected by qRT-PCR, and the target gene relationship between miR-155 and SHIP-1 was found through bioinformatics and dual luciferase activity experiments, which verified the inhibition of miR-155 in B lymphocytes of SLE patients to regulate immunity. Results: We found that hucMSCs-Exo promoted B cell apoptosis, prevented B cell overactivation, and reduced inflammation. MicroRNA-155 (miR-155) has a powerful regulatory function in B cells. It was demonstrated that hucMSCs-Exo acts synergistically with miR-155 inhibitors to target SHIP-1 to B cells more effectively than exosomes alone. Conclusion: Our results provide insight into how hucMSCs-Exo regulates autoimmunity in patients with lupus and suggest targeting miR-155 for autoimmunity while protecting immunity.


Assuntos
Exossomos , Lúpus Eritematoso Sistêmico , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Exossomos/metabolismo , Leucócitos Mononucleares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Lúpus Eritematoso Sistêmico/terapia , Lúpus Eritematoso Sistêmico/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo , Inflamação/metabolismo
7.
Immunobiology ; 227(6): 152272, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36122437

RESUMO

PURPOSE: Natural killer (NK) cells are key players in the immune system, however, the exact mechanism of NK cell dysfunction during HBV infection remains poorly defined. METHODS: Hepatitis B envelope antigen-negative (HBeAg-, n = 19) chronic hepatitis B infection (CHB) patients, HBeAg-positive (HBeAg+, n = 20) CHB patients, HBV-related hepatocellular carcinoma (HBV-HCC, n = 12) patients and healthy blood donors (HD, n = 20), were enrolled in our study. The phenotype and function of the corresponding NK cells of these subjects were then determined. NK cells were cocultured with HBV to assess whether HBV influences the activation of STAT1. Receptors, proliferation, apoptosis rate, and cytotoxicity of NK-92 cells were detected after STAT1 overexpression and knockdown. The relationship between STAT1 and NKG2D promoter was determined by luciferase assay. RESULTS: The levels of NKG2D and STAT1 were the lowest in the HBV-HCC group compared with the HD group, followed by the HBeAg+ group and then the HBeAg- group, respectively. Interestingly, STAT1 levels were positively correlated with NKG2D expression and HBeAg status. Furthermore, STAT1 directly bound to the NKG2D promoter to regulate the transcription and expression of NKG2D. Finally, the results also suggested that knockdown of STAT1 can inhibit proliferation, increase apoptosis rate of NK-92 cells and impair cytotoxicity of NK-92 cells. CONCLUSION: STAT1 is correlated with NK cell dysfunction by downregulating NKG2D transcription in HBV-infected patients. Our findings demonstrate that STAT1 is an important and positive regulator of NK cells, which could provide a potential immunotherapy target for CHB.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Fator de Transcrição STAT1 , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Antígenos E da Hepatite B/metabolismo , Vírus da Hepatite B , Hepatite B Crônica/genética , Células Matadoras Naturais , Neoplasias Hepáticas/virologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
8.
Neural Regen Res ; 17(2): 354-361, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34269210

RESUMO

Stem cell therapy is a promising strategy for the treatment of traumatic brain injury (TBI). However, animal experiments are needed to evaluate safety; in particular, to examine the immunogenicity and tumorigenicity of human umbilical cord mesenchymal stem cells (huMSCs) before clinical application. In this study, huMSCs were harvested from human amniotic membrane and umbilical cord vascular tissue. A rat model of TBI was established using the controlled cortical impact method. Starting from the third day after injury, the rats were injected with 10 µL of 5 × 106/mL huMSCs by cerebral stereotaxis or with 500 µL of 1 × 106/mL huMSCs via the tail vein for 3 successive days. huMSC transplantation decreased the serum levels of proinflammatory cytokines in rats with TBI and increased the serum levels of anti-inflammatory cytokines, thereby exhibiting good immunoregulatory function. The transplanted huMSCs were distributed in the liver, lung and brain injury sites. No abnormal proliferation or tumorigenesis was found in these organs up to 12 months after transplantation. The transplanted huMSCs negligibly proliferated in vivo, and apoptosis was gradually observed at later stages. These findings suggest that huMSC transplantation for the treatment of traumatic brain injury displays good safety. In addition, huMSCs exhibit good immunoregulatory function, which can help prevent and reduce secondary brain injury caused by the rapid release of inflammatory factors after TBI. This study was approved by the Ethics Committee of Wuhan General Hospital of PLA (approval No. 20160054) on November 1, 2016.

9.
Nat Commun ; 12(1): 2506, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947851

RESUMO

It is unclear whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can directly infect human kidney, thus leading to acute kidney injury (AKI). Here, we perform a retrospective analysis of clinical parameters from 85 patients with laboratory-confirmed coronavirus disease 2019 (COVID-19); moreover, kidney histopathology from six additional COVID-19 patients with post-mortem examinations was performed. We find that 27% (23/85) of patients exhibited AKI. The elderly patients and cases with comorbidities (hypertension and heart failure) are more prone to develop AKI. Haematoxylin & eosin staining shows that the kidneys from COVID-19 autopsies have moderate to severe tubular damage. In situ hybridization assays illustrate that viral RNA accumulates in tubules. Immunohistochemistry shows nucleocapsid and spike protein deposits in the tubules, and immunofluorescence double staining shows that both antigens are restricted to the angiotensin converting enzyme-II-positive tubules. SARS-CoV-2 infection triggers the expression of hypoxic damage-associated molecules, including DP2 and prostaglandin D synthase in infected tubules. Moreover, it enhances CD68+ macrophages infiltration into the tubulointerstitium, and complement C5b-9 deposition on tubules is also observed. These results suggest that SARS-CoV-2 directly infects human kidney to mediate tubular pathogenesis and AKI.


Assuntos
Injúria Renal Aguda/etiologia , COVID-19/complicações , Túbulos Renais/virologia , SARS-CoV-2/patogenicidade , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/patologia , Injúria Renal Aguda/virologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/metabolismo , Antígenos Virais/genética , Antígenos Virais/metabolismo , COVID-19/epidemiologia , COVID-19/virologia , China/epidemiologia , Feminino , Humanos , Imunidade Inata , Testes de Função Renal , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Masculino , Pessoa de Meia-Idade , Pandemias , Estudos Retrospectivos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Proteínas Virais/genética , Proteínas Virais/metabolismo , Adulto Jovem
10.
Neuroreport ; 32(9): 771-775, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33994523

RESUMO

Since coronavirus disease 2019 (COVID-19) swept all over the world, several studies have shown the susceptibility of a patient with cancer to COVID-19. In this case, the removed glioblastoma multiforme (GBM)-adjacent (GBM-A), GBM-peritumor and GBM-central (GBM-C) tissues from a convalescent patient of COVID-19, who also suffered from glioblastoma meanwhile, together with GBM-A and GBM tissues from a patient without COVID-19 history as negative controls, were used for RNA ISH, electron microscopy observing and immunohistochemical staining of ACE2 and the virus antigen (N protein). The results of RNA ISH, electron microscopy observing showed that SARS-CoV-2 directly infects some cells within human GBM tissues and SARS-CoV-2 in GBM-C tissue still exists even when it is cleared elsewhere. Immunohistochemical staining of ACE2 and N protein showed that the expressions of ACE2 are significantly higher in specimens, including GBM-C tissue from COVID-19 patient than other types of tissue. The unique phenomenon suggests that the surgical protection level should be upgraded even if the patient is in a convalescent period and the pharyngeal swab tests show negative results. Furthermore, more attention should be paid to confirm whether the shelter-like phenomenon happens in other malignancies due to the similar microenvironment and high expression of ACE2 in some malignancies.


Assuntos
Neoplasias Encefálicas/virologia , COVID-19/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Glioblastoma/virologia , SARS-CoV-2/metabolismo , Adulto , Enzima de Conversão de Angiotensina 2/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/ultraestrutura , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19 , Convalescença , Glioblastoma/metabolismo , Glioblastoma/cirurgia , Glioblastoma/ultraestrutura , Humanos , Hibridização In Situ , Masculino , Microscopia Eletrônica de Transmissão , Fosfoproteínas/metabolismo , RNA Viral/metabolismo , Receptores de Coronavírus/metabolismo , SARS-CoV-2/ultraestrutura , Vírion/ultraestrutura
11.
Front Immunol ; 12: 661052, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995382

RESUMO

While lymphocytopenia is a common characteristic of coronavirus disease 2019 (COVID-19), the mechanisms responsible for this lymphocyte depletion are unclear. Here, we retrospectively reviewed the clinical and immunological data from 18 fatal COVID-19 cases, results showed that these patients had severe lymphocytopenia, together with high serum levels of inflammatory cytokines (IL-6, IL-8 and IL-10), and elevation of many other mediators in routine laboratory tests, including C-reactive protein, lactate dehydrogenase, α-hydroxybutyrate dehydrogenase and natriuretic peptide type B. The spleens and hilar lymph nodes (LNs) from six additional COVID-19 patients with post-mortem examinations were also collected, histopathologic detection showed that both organs manifested severe tissue damage and lymphocyte apoptosis in these six cases. In situ hybridization assays illustrated that SARS-CoV-2 viral RNA accumulates in these tissues, and transmission electronic microscopy confirmed that coronavirus-like particles were visible in the LNs. SARS-CoV-2 Spike and Nucleocapsid protein (NP) accumulated in the spleens and LNs, and the NP antigen restricted in angiotensin-converting enzyme 2 (ACE2) positive macrophages and dendritic cells (DCs). Furthermore, SARS-CoV-2 triggered the transcription of Il6, Il8 and Il1b genes in infected primary macrophages and DCs in vitro, and SARS-CoV-2-NP+ macrophages and DCs also manifested high levels of IL-6 and IL-1ß, which might directly decimate human spleens and LNs and subsequently lead to lymphocytopenia in vivo. Collectively, these results demonstrated that SARS-CoV-2 induced lymphocytopenia by promoting systemic inflammation and direct neutralization in human spleen and LNs.


Assuntos
COVID-19/imunologia , Linfonodos/imunologia , Linfopenia/imunologia , SARS-CoV-2/imunologia , Baço/imunologia , Enzima de Conversão de Angiotensina 2/imunologia , COVID-19/complicações , COVID-19/patologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Citocinas/imunologia , Feminino , Humanos , Inflamação/imunologia , Inflamação/patologia , Linfonodos/ultraestrutura , Linfopenia/etiologia , Linfopenia/patologia , Pessoa de Meia-Idade , Fosfoproteínas/imunologia , RNA Mensageiro/imunologia , Estudos Retrospectivos , SARS-CoV-2/patogenicidade , SARS-CoV-2/ultraestrutura , Baço/ultraestrutura
12.
Exp Ther Med ; 21(1): 39, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33273969

RESUMO

Stromal cell derived factor-1 (SDF-1) is a chemokine that plays a critical role in the homing of stem and progenitor cells, including endothelial progenitor cells (EPCs). However, little research has been undertaken to evaluate the roles of SDF-1 in the biological functions of EPCs and related signaling pathways. The present study aimed to investigate the biological functions of EPCs in response to SDF-1, as well as the underlying mechanisms. The effects of SDF-1 treatment on EPC proliferation, migration and tube formation were assessed by performing MTS, Transwell and in vitro tube formation assays, respectively. The phosphorylation status of Akt and ERK was evaluated by western blotting. The present results indicated that SDF-1 treatment enhanced EPC proliferation, migration and tube formation compared with the control group. Furthermore, SDF-1-induced EPC proliferation was significantly reduced following treatment with a C-X-C Motif Chemokine Receptor 4 antagonist (AMD3100), a PI3K inhibitor (LY294002) and the mitogen-activated protein kinase kinase inhibitor (MEK; PD98059). SDF-1-induced migration and angiogenesis were significantly suppressed by the PI3K inhibitor, but not the MEK inhibitor. Moreover, SDF-1 significantly increased the protein expression levels of phosphorylated (p)-Akt and p-ERK; however, SDF-1-induced effects on protein expression were suppressed by AMD3100, LY294002 and PD98059. Thus, SDF-1-induced EPC proliferation was mediated by activation of the Akt and ERK signaling pathways, whereas SDF-1-mediated EPC migration and tube formation only involved activation of the Akt signaling pathway.

13.
Curr Pharm Des ; 27(7): 989-995, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32940170

RESUMO

BACKGROUND: Glioma is the most common human central nervous system tumour with a high degree of malignancy. Some Rab GTPases have significant effects on glioma. OBJECTIVE: This study aimed to investigate the effect of Rab3b (Rab GTPase3b) on human glioma cell proliferation and apoptosis by silencing Rab3b and to initially verify the value of Rab3b expression for the diagnosis and progression in human glioma. METHODS: Rab3b was silenced by siRNA transfection. Human glioma tissues and normal brain tissues adjacent to glioma were obtained by surgery. Rab3b, P53, Caspase 7, Bax, and Bim mRNA and protein expression levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Cell proliferation was detected by the cell counting kit-8 assay, and the cell cycle and apoptosis were analysed using flow cytometry. RESULTS: Rab3b mRNA and protein expression in human glioma U251 and U87 cells were significantly downregulated after Rab3b silencing. Rab3b silencing inhibited glioma cell proliferation by promoting cell cycle arrest and induced apoptosis by upregulating the expression of apoptosis-related proteins. Rab3b expression in human glioma (n = 33) was significantly higher than that in normal brain tissues adjacent to glioma (n = 15). In addition, Rab3b expression levels in high-grade gliomas (WHO III-IV, n = 19) were also significantly higher than those in low-grade gliomas (WHO I-II, n = 14). CONCLUSION: Rab3b expression levels are significantly related to the progression of gliomas. Moreover, Rab3b silencing not only significantly inhibits cell proliferation in gliomas via cell cycle arrest but also promotes cell apoptosis by upregulating the expression levels of apoptosis-related proteins; however these preliminary in vitro results warrant validation on in vivo studies.


Assuntos
Neoplasias Encefálicas , Glioma , Apoptose , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Humanos
14.
Clin Microbiol Infect ; 27(2): 289.e1-289.e4, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33031947

RESUMO

OBJECTIVES: Rapid, reliable and easy-to-implement diagnostics that can be adapted in early severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnosis are critical to combat the epidemic. SARS-CoV-2 nucleocapsid protein (NP) is an ideal target for viral antigen-based detection. A rapid and convenient method was developed based on fluorescence immunochromatographic (FIC) assay to detect the SARS-CoV-2 NP antigen. However, the accuracy of this diagnostic method needs to be examined. METHODS: This prospective study was carried out between 10 and 15 February 2020 in seven hospitals in Wuhan and one hospital in Chongqing, China. Participants with clinically suspected SARS-CoV-2 infection were enrolled. NP antigen testing by FIC assay and nucleic acid (NA) testing by real-time reverse transcriptase PCR (RT-PCR) were performed simultaneously in a blinded manner with the same nasopharyngeal swab sample. The diagnostic accuracy of NP antigen testing was calculated by taking NA testing of RT-PCR as the reference standard, in which samples with a cycle threshold (Ct) value of ≤40 were interpreted as positive for SARS-CoV-2. RESULTS: A total of 253 participants were enrolled; two participants were excluded from the analyses because of invalid NP testing results. Of 251 participants (99.2%) included in the diagnostic accuracy analysis, 201 (80.1%) had a Ct value of ≤40. With Ct value 40 as the cutoff of NA testing, the sensitivity, specificity and percentage agreement of the FIC assay was 75.6% (95% confidence interval, 69.0-81.3), 100% (95% confidence interval, 91.1-100) and 80.5% (95% confidence interval, 75.1-84.9) respectively. CONCLUSIONS: With RT-PCR assay as the reference standard, NP antigen testing by FIC assay shows high specificity and relatively high sensitivity in SARS-CoV-2 diagnosis in the early phase of infection.


Assuntos
Antígenos Virais/análise , Teste para COVID-19/métodos , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/análise , SARS-CoV-2/isolamento & purificação , Adolescente , Adulto , Idoso , Teste para COVID-19/normas , Feminino , Humanos , Imunoensaio , Masculino , Pessoa de Meia-Idade , Nasofaringe/virologia , Fosfoproteínas/análise , Estudos Prospectivos , RNA Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Adulto Jovem
16.
Magnes Res ; 33(3): 58-67, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33210605

RESUMO

Magnesium transporter 1 (MAGT1) is a key protein that regulates the level of free Mg2+ in cells. Previous studies found that the downregulation of MAGT1 expression in CD8+T cells of HBV patients was correlated with the decrease of intracellular magnesium. However, the expression of MAGT1 mRNA in the CD8+T cells from HBV patients was not significantly altered, indicating that the change in MAGT1 expression was accomplished through posttranscriptional regulation. Through bioinformatics and qRT-PCR detection, miR-199a-5p was found to have a target gene relationship with MAGT1. The expression levels of miR-199a-5p and MAGT1 in HBV infection were evaluated. Lentivirus assays were used to analyze the effects of miR-199a-5p upregulation and downregulation on the MAGT1 expression level and the immune system. Results showed no significant change in the expression of MAGT1 mRNA in HBV-infected cell lines, but the expression of MAGT1 was downregulated. Additionally, the expression level of miR-199a-5p was significantly increased. To this end, we predicted a target relationship between miR-199a-5p and MAGT1 by using TargetScan and verified this relationship through a luciferase activity reporter gene assay. As a result, MAGT1 was found to be the direct target of miR-199a-5p. The targeted inhibition of MAGT1 induced by miR-199a-5p overexpression led to the immune function depletion of CD8+T cells in HBV patients. Downregulating the expression level of miR-199a-5p could effectively improve the functional depletion of CD8+T cells. These findings indicate that miR-199a-5p and MAGT1 could potentially be used as biomarkers for the diagnosis and treatment of chronic HBV infection.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Proteínas de Transporte de Cátions/genética , Hepatite B/metabolismo , MicroRNAs/metabolismo , Adulto , Linfócitos T CD8-Positivos/virologia , Proteínas de Transporte de Cátions/metabolismo , Células Cultivadas , Feminino , Humanos , Masculino , MicroRNAs/genética
18.
JAMA Ophthalmol ; 138(11): 1201-1204, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33034620

RESUMO

Importance: Coronavirus disease 2019 (COVID-19) has been recognized as a pandemic by the World Health Organization. Whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can also infect tissues besides the respiratory system, such as the ocular tissues, remains unclear. Objective: To determine whether SARS-CoV-2 exists intracellularly in the ocular tissues of a patient previously infected with COVID-19. Design, Setting, and Participants: This case study analyzed a patient previously infected with COVID-19 who had an acute glaucoma attack during her rehabilitation. Plasma samples and tissue specimens, including ones from the conjunctiva, anterior lens capsular, trabecular meshwork, and iris, were collected during phacoemulsification and trabeculectomy surgery. Specimens from another patient who had glaucoma but not COVID-19 were used as a negative control. Main Outcomes and Measures: Specimens were analyzed using hematoxylin-eosin staining. The nucleocapsid protein antigen of SARS-CoV-2 was measured in the conjunctiva, trabecular meshwork, and iris using immunofluorescence and immunohistochemistry. The expression of angiotensin-converting enzyme 2 receptor on the conjunctiva was measured using immunohistochemistry. Results: The patient with a previous COVID-19 infection was female and 64 years old, and the control patient without a COVID-19 infection history was male and 61 years old. The nucleocapsid protein antigen of SARS-CoV-2 was detected on the cells of the conjunctiva, trabecular, and iris of the patient infected with COVID-19 but not in the control participant, while angiotensin-converting enzyme 2 receptor proteins were detected on the conjunctiva of both patients. Conclusions and Relevance: The nucleocapsid protein antigen of SARS-CoV-2 existed intracellularly in the ocular tissues of a patient previously infected with COVID-19. Thus, SARS-CoV-2 can also infect ocular tissues in addition to the respiratory system.


Assuntos
COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/isolamento & purificação , Olho/virologia , Feminino , Humanos , Pessoa de Meia-Idade , Fosfoproteínas/isolamento & purificação
19.
Kidney Int Rep ; 5(8): 1333-1341, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32775837

RESUMO

BACKGROUND: The outbreak of highly contagious coronavirus disease 2019 (COVID-19) has posed a serious threat to human life and health, especially for those with underlying diseases. However, the impact of COVID-19 epidemic on hemodialysis (HD) centers and HD patients has not been reported. METHODS: We reviewed the whole course of the COVID-19 in the HD center of Renmin Hospital, Wuhan University (from January 14, 2020, to March 12, 2020). We compared the clinical manifestation and immune profiles among different patient groups with healthy individuals. RESULTS: Forty-two of 230 HD patients (18.26%) and 4 of 33 medical staff (12.12%) were diagnosed with COVID-19 during the study period. Fifteen HD patients (6.52%), including 10 COVID-19 diagnosed, died. Only 2 deaths of the COVID-19 HD patients were associated with pneumonia/lung failure, others were ascribed to cardiovascular/cerebrovascular diseases or hyperkalemia. Except for 3 patients who were admitted to the intensive care unit for a severe condition (8.11%), including 2 who died, most COVID-19 diagnosed patients presented mild or nonrespiratory symptoms. The flow cytometric analysis of peripheral blood showed that multiple lymphocyte populations in HD patients were significantly decreased. HD patients with COVID-19 even displayed more remarkable reduction of serum inflammatory cytokines than other patients with COVID-19. CONCLUSIONS: Compared with the general population, HD patients and health care professionals are the highly susceptible population and HD centers are high-risk areas during the outbreak. Most HD patients with COVID-19 exhibited mild clinical symptoms and did not progress to severe pneumonia, likely due to the impaired cellular immune function and incapability of mounting cytokine storm. More attention should be paid to prevent cardiovascular events, which may be the collateral impacts of the COVID-19 epidemic on HD patients.

20.
Commun Biol ; 3(1): 288, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32504044

RESUMO

Renal fibrosis is controlled by profibrotic and antifibrotic forces. Exploring anti-fibrosis factors and mechanisms is an attractive strategy to prevent organ failure. Here we identified the JNK-associated leucine zipper protein (JLP) as a potential endogenous antifibrotic factor. JLP, predominantly expressed in renal tubular epithelial cells (TECs) in normal human or mouse kidneys, was downregulated in fibrotic kidneys. Jlp deficiency resulted in more severe renal fibrosis in unilateral ureteral obstruction (UUO) mice, while renal fibrosis resistance was observed in TECs-specific transgenic Jlp mice. JLP executes its protective role in renal fibrosis via negatively regulating TGF-ß1 expression and autophagy, and the profibrotic effects of ECM production, epithelial-to-mesenchymal transition (EMT), apoptosis and cell cycle arrest in TECs. We further found that TGF-ß1 and FGF-2 could negatively regulate the expression of JLP. Our study suggests that JLP plays a central role in renal fibrosis via its negative crosstalk with the profibrotic factor, TGF-ß1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Células Epiteliais/patologia , Fibrose/patologia , Nefropatias/patologia , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/fisiopatologia , Animais , Autofagia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Retroalimentação Fisiológica , Feminino , Fibrose/genética , Fibrose/metabolismo , Nefropatias/genética , Nefropatias/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...