Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Energy Lett ; 9(6): 3001-3011, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38911532

RESUMO

Strain is an important property in halide perovskite semiconductors used for optoelectronic applications because of its ability to influence device efficiency and stability. However, descriptions of strain in these materials are generally limited to bulk averages of bare films, which miss important property-determining heterogeneities that occur on the nanoscale and at interfaces in multilayer device stacks. Here, we present three-dimensional nanoscale strain mapping using Bragg coherent diffraction imaging of individual grains in Cs0.1FA0.9Pb(I0.95Br0.05)3 and Cs0.15FA0.85SnI3 (FA = formamidinium) halide perovskite absorbers buried in full solar cell devices. We discover large local strains and striking intragrain and grain-to-grain strain heterogeneity, identifying distinct islands of tensile and compressive strain inside grains. Additionally, we directly image dislocations with surprising regularity in Cs0.15FA0.85SnI3 grains and find evidence for dislocation-induced antiphase boundary formation. Our results shine a rare light on the nanoscale strains in these materials in their technologically relevant device setting.

3.
Adv Mater ; 35(46): e2305549, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37735999

RESUMO

In recent years, halide perovskite materials have been used to make high-performance solar cells and light-emitting devices. However, material defects still limit device performance and stability. Here, synchrotron-based Bragg coherent diffraction imaging is used to visualize nanoscale strain fields, such as those local to defects, in halide perovskite microcrystals. Significant strain heterogeneity within MAPbBr3 (MA = CH3 NH3 + ) crystals is found in spite of their high optoelectronic quality, and both 〈100〉 and 〈110〉 edge dislocations are identified through analysis of their local strain fields. By imaging these defects and strain fields in situ under continuous illumination, dramatic light-induced dislocation migration across hundreds of nanometers is uncovered. Further, by selectively studying crystals that are damaged by the X-ray beam, large dislocation densities and increased nanoscale strains are correlated with material degradation and substantially altered optoelectronic properties assessed using photoluminescence microscopy measurements. These results demonstrate the dynamic nature of extended defects and strain in halide perovskites, which will have important consequences for device performance and operational stability.

4.
Nature ; 606(7913): 305-312, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35676429

RESUMO

Li- and Mn-rich (LMR) cathode materials that utilize both cation and anion redox can yield substantial increases in battery energy density1-3. However, although voltage decay issues cause continuous energy loss and impede commercialization, the prerequisite driving force for this phenomenon remains a mystery3-6 Here, with in situ nanoscale sensitive coherent X-ray diffraction imaging techniques, we reveal that nanostrain and lattice displacement accumulate continuously during operation of the cell. Evidence shows that this effect is the driving force for both structure degradation and oxygen loss, which trigger the well-known rapid voltage decay in LMR cathodes. By carrying out micro- to macro-length characterizations that span atomic structure, the primary particle, multiparticle and electrode levels, we demonstrate that the heterogeneous nature of LMR cathodes inevitably causes pernicious phase displacement/strain, which cannot be eliminated by conventional doping or coating methods. We therefore propose mesostructural design as a strategy to mitigate lattice displacement and inhomogeneous electrochemical/structural evolutions, thereby achieving stable voltage and capacity profiles. These findings highlight the significance of lattice strain/displacement in causing voltage decay and will inspire a wave of efforts to unlock the potential of the broad-scale commercialization of LMR cathode materials.

5.
Adv Mater ; 34(4): e2107326, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34699633

RESUMO

The worldwide energy demand in electric vehicles and the increasing global temperature have called for development of high-energy and long-life lithium-ion batteries (LIBs) with improved high-temperature operational resiliency. However, current attention has been mostly focused on cycling aging at elevated temperature, leaving considerable gaps of knowledge in the failure mechanism, and practical control of abusive calendar aging and thermal runaway that are highly related to the eventual operational lifetime and safety performance of LIBs. Herein, using a combination of various in situ synchrotron X-ray and electron microscopy techniques, a multiscale understanding of surface structure effects involved in regulating the high-temperature operational tolerance of polycrystalline Ni-rich layered cathodes is reported. The results collectively show that an ultraconformal poly(3,4-ethylenedioxythiophene) coating can effectively prevent a LiNi0.8 Co0.1 Mn0.1 O2 cathode from undergoing undesired phase transformation and transition metal dissolution on the surface, atomic displacement, and dislocations within primary particles, intergranular cracking along the grain boundaries within secondary particles, and intensive bulk oxygen release during high state-of-charge and high-temperature aging. The present work highlights the essential role of surface structure controls in overcoming the multiscale degradation pathways of high-energy battery materials at extreme temperature.

6.
ACS Nano ; 15(1): 1321-1330, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33355443

RESUMO

Due to complex degradation mechanisms, disparities between the theoretical and practical capacities of lithium-ion battery cathode materials persist. Specifically, Ni-rich chemistries such as LiNi0.8Mn0.1Co0.1O2 (or NMC811) are one of the most promising choices for automotive applications; however, they continue to suffer severe degradation during operation that is poorly understood, thus challenging to mitigate. Here we use operando Bragg coherent diffraction imaging for 4D analysis of these mechanisms by inspecting the individual crystals within primary particles at various states of charge (SoC). Although some crystals were relatively homogeneous, we consistently observed non-uniform distributions of inter- and intracrystal strain at all measured SoC. Pristine structures may already possess heterogeneities capable of triggering crystal splitting and subsequently particle cracking. During low-voltage charging (2.7-3.5 V), crystal splitting may still occur even during minimal bulk deintercalation activity; and during discharging, rotational effects within parallel domains appear to be the precursor for the nucleation of screw dislocations at the crystal core. Ultimately, this discovery of the central role of crystal grain splitting in the charge/discharge dynamics may have ramifications across length scales that affect macroscopic performance loss during real-world battery operation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...