Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2021: 5765029, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660794

RESUMO

Pulmonary hypertension (PH) is occult, with no distinctive clinical manifestations and a poor prognosis. Pulmonary vascular remodelling is an important pathological feature in which pulmonary artery smooth muscle cells (PASMCs) phenotypic switching plays a crucial role. MicroRNAs (miRNAs) are a class of evolutionarily highly conserved single-stranded small noncoding RNAs. An increasing number of studies have shown that miRNAs play an important role in the occurrence and development of PH by regulating PASMCs phenotypic switching, which is expected to be a potential target for the prevention and treatment of PH. miRNAs such as miR-221, miR-15b, miR-96, miR-24, miR-23a, miR-9, miR-214, and miR-20a can promote PASMCs phenotypic switching, while such as miR-21, miR-132, miR-449, miR-206, miR-124, miR-30c, miR-140, and the miR-17~92 cluster can inhibit it. The article reviews the research progress on growth factor-related miRNAs and hypoxia-related miRNAs that mediate PASMCs phenotypic switching in PH.


Assuntos
Hipertensão Pulmonar/genética , MicroRNAs/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/patologia , Animais , Humanos , Hipertensão Pulmonar/fisiopatologia , MicroRNAs/genética , Fenótipo , Transdução de Sinais/genética
2.
J Zhejiang Univ Sci B ; 17(12): 916-930, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27921397

RESUMO

Polyamines (PAs) and nitric oxide (NO) are vital signals in modulating plant response to abiotic stress. However, to our knowledge, studies on the relationship between NO and PAs in response to cold stress in tomato are limited. Accordingly, in this study, we investigated the effects of putrescine (Put) and spermidine (Spd) on NO generation and the function of Spd-induced NO in the tolerance of tomato seedling under chilling stress. Spd increased NO release via the nitric oxide synthase (NOS)-like and nitrate reductase (NR) enzymatic pathways in the seedlings, whereas Put had no such effect. Moreover, H2O2 might act as an upstream signal to stimulate NO production. Both exogenous NO donor (sodium nitroprusside (SNP)) and Spd enhanced chilling tolerance in tomato, thereby protecting the photosynthetic system from damage. Compared to chilling treatment alone, Spd enhanced the gene expressions of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and their enzyme activities in tomato leaves. However, a scavenger or inhibitor of NO abolished Spd-induced chilling tolerance and blocked the increased expression and activity due to Spd of these antioxidant enzymes in tomato leaves under chilling stress. The results showed that NO induced by Spd plays a crucial role in tomato's response to chilling stress.


Assuntos
Óxido Nítrico/biossíntese , Poliaminas/farmacologia , Plântula/metabolismo , Solanum lycopersicum/metabolismo , Antioxidantes , Temperatura Baixa , Solanum lycopersicum/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Plântula/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...