Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 10(35): 20960-20971, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35692714

RESUMO

The photoelectric conversion efficiency of perovskite solar cells has improved rapidly, but their stability is poor, which is an important factor that restricts their commercial production. This paper studies the physical and chemical stability of perovskite solar cells based on first principles. It is well known that methylamido lead iodide compounds and methylamino lead iodide compounds are easily degraded into NH2CH[double bond, length as m-dash]NH2I, CH3NH3I and PbI2. First, the chemical stability of the above two perovskite-type solar cell materials is discussed by calculating the binding energy. Then, their phonon scattering lines, state density and thermodynamic properties are calculated and analyzed, and the work functions of different types of crystals along different planes such as [1 0 0], [0 1 0 0], [0 0 1] and [1 1 1] are calculated. The results show that the work function of the methylamine iodized lead compound is greater than that of the methylamidine iodized lead compound, which means that the electrons of the methylamidine iodized lead compound escape more easily and the carrier transfer efficiency is higher under the same conditions. Finally, the effects of different temperatures, different electric fields and light on the two kinds of crystal materials are analyzed. This provides theoretical guidance for us to improve the stability of perovskite materials experimentally.

2.
ACS Omega ; 4(22): 20024-20035, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31788637

RESUMO

The electron-transport layer in planar perovskite solar cells plays an important role in improving photoelectric conversion efficiency. At present, the main electronic transmission materials in perovskite solar cells include TiO2, ZnO, WO3, ZrO2, SnO2, ZnO2, etc. This work mainly studies the electron-transport characteristics of six different electron-transport layers in perovskite solar cells. Based on the density functional theory, the electron-transport model of a solar cell doped with formamidinium iodide lead compound perovskite under six different electron-transport materials was constructed, and their effective electron mass and the mobility of carriers were obtained by optimizing the structure and theoretical calculation. The results show that the mobility of electrons in TiO2 crystal is slightly higher than that of FA0.75Cs0.25Sn0.5Pb0.5I3 carriers. Because of their high matching degree, it can be reasonably explained that titanium dioxide has been widely used in perovskite solar cells and achieved higher photoelectric conversion efficiency. In addition, the mobility of carriers in WO3 and SnO2 crystals is also high, so they also have great advantages in carrier transport. Due to its abundant, nontoxic, and low-pollution content, TiO2 has become the most widely used electronic transmission layer material for solar cells. Furthermore, we have explored eight new semiconductor materials that have not yet been used in perovskite solar cells as the electron-transport layer. The calculation results show that Ta2O5 and Bi2O3 are promising materials for the electron-transport layer. This study provides a theoretical basis for seeking better electronic transmission materials for solar cells in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...