Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 329: 121802, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38286526

RESUMO

Multivariate models were developed to classify cellulose nanofibril (CNF) fibrillation by a quality index from near infrared (NIR) spectra. Commercial pulps of Eucalyptus spp. were used to produce cellulose nanofibrils by means of a fibrillator mill. After each of the five passes through the mill, samples were collected and analyzed for energy consumption and fiber classification. As a standard, pulps were oxidized with TEMPO reagent followed by a single pass through the mill to compare the resulting quality of CNFs produced by each method. NIR spectra of CNFs were associated with quality indices determined by conventional laboratory analyses that included morphology, turbidity, mechanical properties, X-ray diffraction and quality index measurements. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were applied to the spectral and experimental data. Fibrillator milling to obtain CNFs was efficient and resulted in gel formation following the third pass through the mill. NIR spectroscopy combined with PLS-DA was used successfully to create a model to classify quality of CNFs with 96 % certainty in 3 wt% solutions. These findings suggest that NIR spectroscopy holds promise for estimating CNF quality in suspension, particularly in real-time industrial applications where reliable estimates are crucial.


Assuntos
Eucalyptus , Nanofibras , Celulose/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Eucalyptus/química , Carboidratos , Difração de Raios X , Nanofibras/química
2.
Int J Biol Macromol ; 254(Pt 3): 127813, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37935293

RESUMO

The scarcity of nonrenewable resources and the increase in environmental pollution have intensified the search for materials that exhibit specific characteristics and are nontoxic, renewable, and sustainable. Thus, the objective of this work was to produce natural polyphenol adhesives reinforced with rice husk and its ash to increase the mechanical resistance and moisture resistance of the glue line in wood bonded joints. Polyphenols were extracted from the bark of Stryphnodendron adstringens (Mart.) Coville (barbatimão). Adhesives were produced with a 50 % solid and 50 % liquid composition. Rice husk and husk ash underwent X-ray fluorescence analysis (XRF). Adhesives and reinforcement material were characterized by Fourier transform infrared (FTIR) and thermogravimetric analyses (TGA). The adhesives were glued in a mechanical press in specimens made of Pinus elliottii, which were subjected to shear testing of the wet and dry glue line. As a result, the chemical components present in rice husk and its ash positively influenced the properties of the adhesives. The mechanical glue line shear test showed that the adhesive reinforced with rice husk ash did not show a statistically significant difference. However, natural adhesives based on polyphenols from barbatimão strengthened with rice husk and ash showed improved properties, demonstrating how much it pays to use the residue of rice production to reinforce the matrix of tannin adhesives. Thus, it can be determined that reinforcement with rice husk and ash is efficient in improving some properties of natural adhesives based on polyphenols.


Assuntos
Oryza , Árvores , Oryza/química , Brasil , Casca de Planta/química , Polifenóis/análise , Ecossistema
4.
Int J Biol Macromol ; 243: 125279, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301348

RESUMO

This study aimed to evaluate the influence of the addition of the cationic surfactant cetyltrimethylammonium bromide (CTAB) in microfibrillated cellulose (MFC/CNFs) suspensions submitted to different pretreatments to produce redispersible spray-dried (SD) MFC/CNFs. Suspensions pretreated with 5 % and 10 % sodium silicate and oxidized with 2,2,6,6,-tetramethylpiperidinyl-1-oxyl (TEMPO) were modified with CTAB surfactant and subsequently dried by SD. The SD-MFC/CNFs aggregates were redispersed by ultrasound to produce cellulosic films by the casting method. In summary, the results demonstrated that the addition of CTAB surfactant to the TEMPO-oxidized suspension was critical to achieving the most effective redispersion. The experimental results obtained using micrographs, optical (UV-Vis), mechanical, water vapor barrier properties, and the quality index confirmed that the addition of CTAB to the TEMPO-oxidized suspension favored the redispersion of spray-dried aggregates, development of cellulosic films with attractive properties, offering possibilities for the elaboration of new products, for example, in the production of bionanocomposites with higher mechanical performance. This research brings interesting insights into the redispersion and application of SD-MFC/CNFs aggregates, strengthening the commercialization of MFC/CNFs for industrial use.


Assuntos
Biofilmes , Celulose , Suspensões , Cetrimônio
5.
Environ Sci Pollut Res Int ; 30(29): 74426-74440, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37209330

RESUMO

Vegetable tannins are excellent options to produce adhesives for the panel industry since they have the capacity to reduce formaldehyde emissions and are derived from renewable sources. They also allow for the possibility of increasing the resistance of the glue line through the use of natural reinforcements such as cellulose nanofibrils. Condensed tannins, polyphenols isolated from tree bark, are widely studied for the production of natural adhesives as an alternative to commercial synthetic adhesives. So, the purpose of our research is to show a natural adhesive alternative for wood bonding. Therefore, the objective of the study was to evaluate the quality of tannin adhesives of different species reinforced with different nanofibrils and thus predict which adhesive is the most promising at different concentrations of reinforcement and with different types of polyphenols. To meet this objective, polyphenols were extracted from the bark, nanofibrils were obtained, and both processes followed the current standards. Then, the adhesives were produced, their properties were characterized, and they were chemically analyzed via Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). A mechanical shear analysis of the glue line was also performed. According to the results, the addition of cellulose nanofibrils affected the physical properties of the adhesives, mostly the content of solids and the gel time. In the FTIR spectra, the OH band of the 5% Pinus and 5% Eucalyptus (EUC) TEMPO in the barbatimao adhesive and the 5% EUC of the cumate red adhesive were reduced, possibly due to their higher moisture resistance. Mechanical tests of the glue line showed that barbatimao with 5% Pinus and cumate red with 5% EUC performed best in the dry and wet shear tests. The control was the best-performing sample in the test of the commercial adhesives. The cellulose nanofibrils used as reinforcement did not change the thermal resistance of the adhesives. Therefore, the addition of cellulose nanofibrils to these tannins is an interesting means of increasing the mechanical strength, as occurred in commercial adhesive with 5% EUC. Thus, the physical and mechanical properties of tannin adhesives were better with reinforcement, making it possible to expand the use of these adhesives in the panel industry. At the industrial level, it is important to replace synthetic products with natural ones. Besides environmental and health issues, there is the question of the value of petroleum-based products, which have been widely studied so that they can be replaced.


Assuntos
Polifenóis , Madeira , Polifenóis/análise , Madeira/química , Adesivos/química , Celulose/química , Taninos/química
6.
Int J Biol Macromol ; 235: 123850, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36863677

RESUMO

In this work, nanofibrillated cellulose (NFC) was extracted from cactus Cereus jamacaru DC. (mandacaru) for nanopaper production. The technique adopted includes alkaline treatment, bleaching, and grinding treatment. The NFC was characterized according to its properties and scored based on a quality index. Particle homogeneity, turbidity, and microstructure of the suspensions were evaluated. Correspondingly, the optical and physical-mechanical properties of the nanopapers were investigated. The chemical constituents of the material were analyzed. The sedimentation test and the zeta potential analyzed the stability of the NFC suspension. The morphological investigation was performed using environmental scanning electron microscopy (ESEM) and transmission electron microscopy (TEM). X-ray diffraction (XRD) analysis revealed that Mandacaru NFC has high crystallinity. Thermogravimetric analysis (TGA) and mechanical analysis were also used and revealed good thermal stability and good mechanical properties of the material. Therefore, the application of mandacaru is interesting in sectors such as packaging and electronic device development, as well as in composite materials. Given its score of 72 points on a quality index, this material was presented as an attractive, facile, and innovative source for obtaining NFC.


Assuntos
Celulose , Nanofibras , Celulose/química , Nanofibras/química
7.
Environ Sci Pollut Res Int ; 30(2): 4934-4948, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35978240

RESUMO

Specific kinds of enzymes have been used as an eco-friendly pre-treatment for mechanical extraction of cellulose nanofibrils (CNFs) from vegetal pulps. Another well-established pre-treatment is the 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-mediated oxidation, which has gained considerable attention. Pre-treatments assist in fiber swelling, facilitating mechanical fibrillation, and reducing energy consumption; however, some of these methods are extremely expensive. This work aimed to evaluate the influence of enzymatic pre-treatment with endoglucanase on the energy consumption during mechanical fibrillation of cellulose pulps. Bleached pulps from Eucalyptus sp. and Pinus sp. were pre-treated with endoglucanase enzyme compared to TEMPO-meditated oxidation. Average diameters of CNFs pre-treated with enzymes were close to that found for TEMPO-oxidized nanofibrils (TOCNFs). Results showed that enzymatic pre-treatment did not significantly modify the pulp chemical and morphological characteristics with efficient stabilization of the CNFs suspension at higher supernatant turbidity. Energy consumption of pulps treated with endoglucanase enzymes was lower than that shown by pulps treated with TEMPO, reaching up to 58% of energy savings. The enzyme studied in the pulp treatment showed high efficiency in reducing energy consumption during mechanical fibrillation and production of films with high mechanical quality, being an eco-friendly option for pulp treatment.


Assuntos
Celulase , Celulose , Oxirredução , Compostos de Sódio , Ácido Hipocloroso
8.
Int J Biol Macromol ; 213: 780-790, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35690158

RESUMO

This study aimed to evaluate the properties of cellulose nanofibers (CNFs) with different hemicellulose contents and cellulose II polymorphs. A link was found between these polysaccharides and the properties of CNFs. A decrease in crystallinity (from 69 to 63%) and changes in the crystalline structure of cellulose subjected to an alkaline environment were observed, promoting the partial conversion of cellulose I to cellulose II (from 2 to 42%) and preventing CNFs production at NaOH concentrations higher than 5%. Most treatments showed pseudoplastic fluid behavior, except for the 10% NaOH treatment over 2 h, which showed Newtonian fluid behavior. The quality index of the reference CNFs (TEMPO-oxidized) was the highest (80 ± 3), followed by that of the 5% NaOH-treated (68 ± 3 and 22% energy savings compared to the untreated sample), and the untreated (63 ± 3) samples; and the 10% NaOH treatments had quality indices of 51 ± 3 and 32 ± 1, respectively.


Assuntos
Celulose , Nanofibras , Celulose/química , Nanofibras/química , Polissacarídeos , Hidróxido de Sódio
9.
Environ Sci Pollut Res Int ; 29(44): 66422-66437, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35501446

RESUMO

The applicability of cellulose nanofibrils (CNFs) has received attention due to their attractive properties. This study proposes the functionalization of açai CNFs with copaiba oil and vegetal tannins to produce films with potential for packaging. Bio-based films were evaluated by vapor permeability, colorimetry, and mechanical strength. CNFs were produced by mechanical fibrillation, from suspensions of bleached açai fibers and commercial eucalipytus pulp. Moreover, copaiba oil and vegetal tannin were added to the CNFs to produce films/nanopapers by casting from both suspensions with concentrations of 1% (based on CNF dry mass). The bulk densities of the eucalyptus CNF films were higher (1.126-1.171 g cm-3) compared to the açai CNF ones. Films from eucalyptus and açai pulps containing copaiba oil and tannins presented higher Tonset and Tmax, respectively (312 and 370 °C). Films with açaí CNFs functionalized with copaiba oil and tannin showed the lowest permeability value (370 g day-1 m-2). Films produced with eucalyptus pulp, and eucalyptus pulp functionalized with copaiba oil highlighted by superior mechanical strength, achieving 133.8 and 121.4 MPa, respectively. The evaluation of colorimetry showed a greater tendency to yellowing for açai films, especially those functionalized with vegetal tannins. Besides the low cost, functionalized vegetal-based nanomaterials could have attractive properties, with potential for application as some kind of packaging, for transporting basic products, such as breads, flours, or products with low moisture content, enabling efficient utilization of forest wastes.


Assuntos
Eucalyptus , Nanofibras , Óleos Voláteis , Celulose , Florestas , Suspensões , Taninos
10.
Int J Biol Macromol ; 209(Pt A): 413-425, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413312

RESUMO

Lignin-cellulose nanofibrils (LCNF) are of attracting an increasing interest due to the benefits of maintaining the lignin in the nanomaterial composition. The production of LCNF requires considerable energy consumption, which has been suppressed employing pretreatment of biomass, in which it highlights those that employ enzymes that have the advantage of being more environmentally friendly. Some negative aspects of the presence of lignin in the fiber to obtain cellulose nanofibrils is that it can hinder the delamination of the cell wall and act as a physical barrier to the action of cellulase enzymes. This study aimed to evaluate the impact of a combined enzymatic pretreatment of laccase and endoglucanase for high content lignin LCNF production. The morphological and chemical properties, visual aspect and stability, crystallinity, mechanical properties, rheology, barrier properties and quality index were used to characterize the LCNF. The laccase loading used was efficient in modifying the lignin to facilitate the action of the endoglucanase on cellulose without causing the removal of this macromolecule. This pretreatment improved the quality of LCNF (61 ± 3 to 71 ± 2 points) with an energy saving of 42% and, therefore, this pretreatment could be suitable for industrial production for a variety of applications.


Assuntos
Celulase , Lignina , Biomassa , Celulase/química , Celulose/química , Hidrólise , Lacase , Lignina/química
11.
Carbohydr Polym ; 214: 152-158, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30925984

RESUMO

Cocoa shell was evaluated as a precursor for cellulose nanofibrils (NFCs) using mechanical defibrillation. Its morphology was analysed using optical microscopy and scanning electron microscopy with field emission. Rheological and mechanical behaviour were evaluated through flow curves with a strain rate ranging from 0 to 300 s-1 at 25 °C and by means of oscillatory frequency sweeps (0.01 Hz-10 Hz) and shear stress (3 Pa). The thermal-mechanical behaviour was determined by a temperature sweep with a heating rate of 3 °C min-1 and a temperature range of 25 °C-100 °C. Micrographs identified the presence of protoxilem with a mean diameter of 23.34 nm. The flow curve showed the characteristic behaviour of a pseudoplastic fluid. The storage module (G') and the loss modulus (G″) were dependent on the frequency applied, indicating that the material exhibits a weak gel characteristic. The viscoelastic characteristics were influenced by temperature. Therefore, cocoa shell is a new alternative in the production of nanocellulose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...