Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(3)2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673578

RESUMO

NIMA-related kinases, or NEKs, are a family of Ser/Thr protein kinases involved in cell cycle and mitosis, centrosome disjunction, primary cilia functions, and DNA damage responses among other biological functional contexts in vertebrate cells. In human cells, there are 11 members, termed NEK1 to 11, and the research has mainly focused on exploring the more predominant roles of NEKs in mitosis regulation and cell cycle. A possible important role of NEKs in DNA damage response (DDR) first emerged for NEK1, but recent studies for most NEKs showed participation in DDR. A detailed analysis of the protein interactions, phosphorylation events, and studies of functional aspects of NEKs from the literature led us to propose a more general role of NEKs in DDR. In this review, we express that NEK1 is an activator of ataxia telangiectasia and Rad3-related (ATR), and its activation results in cell cycle arrest, guaranteeing DNA repair while activating specific repair pathways such as homology repair (HR) and DNA double-strand break (DSB) repair. For NEK2, 6, 8, 9, and 11, we found a role downstream of ATR and ataxia telangiectasia mutated (ATM) that results in cell cycle arrest, but details of possible activated repair pathways are still being investigated. NEK4 shows a connection to the regulation of the nonhomologous end-joining (NHEJ) repair of DNA DSBs, through recruitment of DNA-PK to DNA damage foci. NEK5 interacts with topoisomerase IIß, and its knockdown results in the accumulation of damaged DNA. NEK7 has a regulatory role in the detection of oxidative damage to telomeric DNA. Finally, NEK10 has recently been shown to phosphorylate p53 at Y327, promoting cell cycle arrest after exposure to DNA damaging agents. In summary, this review highlights important discoveries of the ever-growing involvement of NEK kinases in the DDR pathways. A better understanding of these roles may open new diagnostic possibilities or pharmaceutical interventions regarding the chemo-sensitizing inhibition of NEKs in various forms of cancer and other diseases.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , Humanos
2.
Biochem Cell Biol ; 98(2): 293-298, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31608669

RESUMO

Cell fractionation can be used to determine the localization and trafficking of proteins between cellular compartments such as the cytosol, mitochondria, and nuclei. Subcellular fractionation is usually performed immediately after tissue dissection because freezing may fragment cell membranes and induce organellar cross-contamination. Mitochondria are especially sensitive to freezing/thawing and mechanical homogenization. We proposed a protocol to improve the retention of soluble proteins in the mitochondrial fraction obtained from small amounts of frozen skeletal muscle. Fifty milligrams of the red portion of gastrocnemius muscle from Wistar rats were immediately processed or frozen in liquid nitrogen and stored at -80 °C for further processing. We compared the enrichment of subcellular fractions from frozen/fresh samples obtained with the modified protocol with those obtained by standard fractionation. Western blot analyses of marker proteins for cytosolic (alpha-tubulin), mitochondrial (VDAC1), and nuclear (histone-H3) fractions indicated that all of the procedures resulted in enriched subcellular fractions with minimal organellar cross-contamination. Notably, the activity of the soluble protein citrate synthase was higher in the mitochondrial fractions obtained with the modified protocol from frozen/fresh samples compared with the standard protocol. Therefore, our protocol improved the retention of soluble proteins in the mitochondrial fraction and may be suitable for subcellular fractionation of small amounts of frozen skeletal muscle samples.


Assuntos
Músculo Esquelético/citologia , Frações Subcelulares , Animais , Núcleo Celular/metabolismo , Citrato (si)-Sintase/metabolismo , Citosol/metabolismo , Congelamento , Histonas/metabolismo , Mitocôndrias Musculares/metabolismo , Ratos , Ratos Wistar , Tubulina (Proteína)/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...