Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 13(2): e0291321, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35196127

RESUMO

Ammonium translocation through biological membranes, by the ubiquitous Amt-Mep-Rh family of transporters, plays a key role in all domains of life. Two highly conserved histidine residues protrude into the lumen of the pore of these transporters, forming the family's characteristic Twin-His motif. It has been hypothesized that the motif is essential to confer the selectivity of the transport mechanism. Here, using a combination of in vitro electrophysiology on Escherichia coli AmtB, in silico molecular dynamics simulations, and in vivo yeast functional complementation assays, we demonstrate that variations in the Twin-His motif trigger a mechanistic switch between a specific transporter, depending on ammonium deprotonation, to an unspecific ion channel activity. We therefore propose that there is no selective filter that governs specificity in Amt-Mep-Rh transporters, but the inherent mechanism of translocation, dependent on the fragmentation of the substrate, ensures the high specificity of the translocation. We show that coexistence of both mechanisms in single Twin-His variants of yeast Mep2 transceptors disrupts the signaling function and so impairs fungal filamentation. These data support a signaling process driven by the transport mechanism of the fungal Mep2 transceptors. IMPORTANCE Fungal infections represent a significant threat to human health and cause huge damage to crop yields worldwide. The dimorphic switch between yeast and filamentous growth is associated with the virulence of pathogenic fungi. Of note, fungal Mep2 proteins of the conserved Amt-Mep-Rh family play a transceptor role in the induction of filamentation; however, the signaling mechanism remains largely unknown. Amt-Mep-Rh proteins ensure the specific scavenging of NH4+ through a mechanism relying on substrate deprotonation, thereby preventing competition and translocation of similar-sized K+. Our multidisciplinary approaches using E. coli AmtB, Saccharomyces cerevisiae, and Candida albicans Mep2 show that double variation of the family-defining Twin-His motif triggers a mechanistic switch from a specific transporter to an unspecific ion channel with both mechanisms still coexisting in single variants. Moreover, we show that this mechanistic alteration is associated with loss of signaling ability of Mep2, supporting a transport mechanism-driven process in filamentation induction.


Assuntos
Compostos de Amônio , Proteínas de Transporte de Cátions , Proteínas de Escherichia coli , Proteínas de Saccharomyces cerevisiae , Candida albicans/genética , Proteínas de Transporte de Cátions/genética , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas Fúngicas/genética , Humanos , Proteínas de Membrana Transportadoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Translocação Genética
3.
Elife ; 92020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32662768

RESUMO

The transport of charged molecules across biological membranes faces the dual problem of accommodating charges in a highly hydrophobic environment while maintaining selective substrate translocation. This has been the subject of a particular controversy for the exchange of ammonium across cellular membranes, an essential process in all domains of life. Ammonium transport is mediated by the ubiquitous Amt/Mep/Rh transporters that includes the human Rhesus factors. Here, using a combination of electrophysiology, yeast functional complementation and extended molecular dynamics simulations, we reveal a unique two-lane pathway for electrogenic NH4+ transport in two archetypal members of the family, the transporters AmtB from Escherichia coli and Rh50 from Nitrosomonas europaea. The pathway underpins a mechanism by which charged H+ and neutral NH3 are carried separately across the membrane after NH4+ deprotonation. This mechanism defines a new principle of achieving transport selectivity against competing ions in a biological transport process.


Assuntos
Amônia/metabolismo , Compostos de Amônio/metabolismo , Escherichia coli/metabolismo , Transporte de Íons , Nitrosomonas europaea/metabolismo
4.
J Phys Chem Lett ; 9(14): 3910-3914, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-29939747

RESUMO

In-solution small-angle X-ray and neutron scattering (SAXS/SANS) have become popular methods to characterize the structure of membrane proteins, solubilized by either detergents or nanodiscs. SANS studies of protein-detergent complexes usually require deuterium-labeled proteins or detergents, which in turn often lead to problems in their expression or purification. Here, we report an approach whose novelty is the combined analysis of SAXS and SANS data from an unlabeled membrane protein complex in solution in two complementary ways. First, an explicit atomic analysis, including both protein and detergent molecules, using the program WAXSiS, which has been adapted to predict SANS data. Second, the use of MONSA which allows one to discriminate between detergent head- and tail-groups in an ab initio approach. Our approach is readily applicable to any detergent-solubilized protein and provides more detailed structural information on protein-detergent complexes from unlabeled samples than SAXS or SANS alone.


Assuntos
Técnicas de Química Analítica/métodos , Detergentes/química , Proteínas de Membrana/química , Difração de Nêutrons , Difração de Raios X , Simulação de Dinâmica Molecular , Solubilidade
5.
mBio ; 8(6)2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29114025

RESUMO

Transmembrane NADPH oxidase (NOX) enzymes have been so far only characterized in eukaryotes. In most of these organisms, they reduce molecular oxygen to superoxide and, depending on the presence of additional domains, are called NOX or dual oxidases (DUOX). Reactive oxygen species (ROS), including superoxide, have been traditionally considered accidental toxic by-products of aerobic metabolism. However, during the last decade it has become evident that both O2•- and H2O2 are key players in complex signaling networks and defense. A well-studied example is the production of O2•- during the bactericidal respiratory burst of phagocytes; this production is catalyzed by NOX2. Here, we devised and applied a novel algorithm to search for additional NOX genes in genomic databases. This procedure allowed us to discover approximately 23% new sequences from bacteria (in relation to the number of NOX-related sequences identified by the authors) that we have added to the existing eukaryotic NOX family and have used to build an expanded phylogenetic tree. We cloned and overexpressed the identified nox gene from Streptococcus pneumoniae and confirmed that it codes for an NADPH oxidase. The membrane of the S. pneumoniae NOX protein (SpNOX) shares many properties with its eukaryotic counterparts, such as affinity for NADPH and flavin adenine dinucleotide, superoxide dismutase and diphenylene iodonium inhibition, cyanide resistance, oxygen consumption, and superoxide production. Traditionally, NOX enzymes in eukaryotes are related to functions linked to multicellularity. Thus, the discovery of a large family of NOX-related enzymes in the bacterial world brings up fascinating questions regarding their role in this new biological context.IMPORTANCE NADPH oxidase (NOX) enzymes have not yet been reported in bacteria. Here, we carried out computational and experimental studies to provide the first characterization of a prokaryotic NOX. Out of 996 prokaryotic proteins showing NOX signatures, we initially selected, cloned, and overexpressed four of them. Subsequently, and based on preliminary testing, we concentrated our efforts on Streptococcus SpNOX, which shares many biochemical characteristics with NOX2, the referent model of NOX enzymes. Our work makes possible, for the first time, the study of pure forms of this important family of enzymes, allowing for biophysical and molecular characterization in an unprecedented way. Similar advances regarding other membrane protein families have led to new structures, further mechanistic studies, and the improvement of inhibitors. In addition, biological functions of these newly described bacterial enzymes will be certainly discovered in the near future.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Streptococcus pneumoniae/genética , Algoritmos , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Bases de Dados Genéticas , Transporte de Elétrons , Humanos , NADPH Oxidase 2/química , NADPH Oxidase 2/genética , NADPH Oxidases/química , NADPH Oxidases/isolamento & purificação , Oxirredução , Estresse Oxidativo , Fagócitos/enzimologia , Filogenia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Streptococcus pneumoniae/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...