Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 12(12)2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353101

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the most recent global pandemic that has caused more than a million deaths around the world. The spike glycoprotein (S) drives the entry and fusion of this virus and is the main determinant of cell tropism. To explore S requirements for entry under BSL2 conditions, S has been pseudotyped onto vesicular stomatitis virus (VSV) or retroviral particles with varied success. Several alterations to S were demonstrated to improve pseudoparticle titers, but they have not been systematically compared. In this study, we produced pseudotyped VSV particles with multiple modifications to S, including truncation, mutation, and tagging strategies. The main objective of this study was to determine which modifications of the S protein optimize cell surface expression, incorporation into pseudotyped particles, and pseudoparticle entry. Removal of the last 19 residues of the cytoplasmic tail produced a hyper-fusogenic S, while removal of 21 residues increased S surface production and VSV incorporation. Additionally, we engineered a replication-competent VSV (rVSV) virus to produce the S-D614G variant with a truncated cytoplasmic tail. While the particles can be used to assess S entry requirements, the rVSV∆G/SMet1D614G∆21 virus has a poor specific infectivity (particle to infectious titer ratio).


Assuntos
SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Vírus da Estomatite Vesicular Indiana/genética , Proteínas do Envelope Viral/genética , Replicação Viral , Animais , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Imunofluorescência , Expressão Gênica , Genes Reporter , Engenharia Genética , Células Gigantes , Humanos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Vírus da Estomatite Vesicular Indiana/metabolismo , Internalização do Vírus
2.
PLoS Pathog ; 16(10): e1008942, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33035266

RESUMO

Human metapneumovirus (hMPV) is a leading cause of viral respiratory infection in children, and can cause severe lower respiratory tract infection in infants, the elderly, and immunocompromised patients. However, there remain no licensed vaccines or specific treatments for hMPV infection. Although the hMPV fusion (F) protein is the sole target of neutralizing antibodies, the immunological properties of hMPV F remain poorly understood. To further define the humoral immune response to the hMPV F protein, we isolated two new human monoclonal antibodies (mAbs), MPV458 and MPV465. Both mAbs are neutralizing in vitro and were determined to target a unique antigenic site using competitive biolayer interferometry. We determined both MPV458 and MPV465 have higher affinity for monomeric hMPV F than trimeric hMPV F. MPV458 was co-crystallized with hMPV F, and the mAb primarily interacts with an alpha helix on the F2 region of the hMPV F protein. Surprisingly, the major epitope for MPV458 lies within the trimeric interface of the hMPV F protein, suggesting significant breathing of the hMPV F protein must occur for host immune recognition of the novel epitope. In addition, significant glycan interactions were observed with a somatically mutated light chain framework residue. The data presented identifies a novel epitope on the hMPV F protein for epitope-based vaccine design, and illustrates a new mechanism for human antibody neutralization of viral glycoproteins.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Pneumovirus/imunologia , Anticorpos Neutralizantes/farmacologia , Epitopos/imunologia , Humanos , Metapneumovirus/imunologia , Infecções por Paramyxoviridae/virologia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/imunologia
3.
Front Immunol ; 10: 2778, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849961

RESUMO

The pneumoviruses respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) are two widespread human pathogens that can cause severe disease in the young, the elderly, and the immunocompromised. Despite the discovery of RSV over 60 years ago, and hMPV nearly 20 years ago, there are no approved vaccines for either virus. Antibody-mediated immunity is critical for protection from RSV and hMPV, and, until recently, knowledge of the antibody epitopes on the surface glycoproteins of RSV and hMPV was very limited. However, recent breakthroughs in the recombinant expression and stabilization of pneumovirus fusion proteins have facilitated in-depth characterization of antibody responses and structural epitopes, and have provided an enormous diversity of new monoclonal antibody candidates for therapeutic development. These new data have primarily focused on the RSV F protein, and have led to a wealth of new vaccine candidates in preclinical and clinical trials. In contrast, the major structural antibody epitopes remain unclear for the hMPV F protein. Overall, this review will cover recent advances in characterizing the antigenic sites on the RSV and hMPV F proteins.


Assuntos
Anticorpos Antivirais/imunologia , Epitopos/imunologia , Infecções por Pneumovirus/epidemiologia , Infecções por Pneumovirus/imunologia , Pneumovirus/imunologia , Proteínas Virais de Fusão/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/química , Antígenos Virais/química , Antígenos Virais/imunologia , Efeitos Psicossociais da Doença , Epitopos/química , Saúde Global , Humanos , Infecções por Pneumovirus/virologia , Ligação Proteica/imunologia , Vigilância em Saúde Pública , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/imunologia , Relação Estrutura-Atividade , Proteínas Virais de Fusão/química
4.
J Virol ; 93(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31292250

RESUMO

Human metapneumovirus (hMPV) is a leading cause of viral lower respiratory tract infection in children. The sole target of neutralizing antibodies targeting hMPV is the fusion (F) protein, a class I viral fusion protein mediating virus-cell membrane fusion. There have been several monoclonal antibodies (mAbs) isolated that neutralize hMPV; however, determining the antigenic sites on the hMPV F protein mediating such neutralizing antibody generation would assist efforts for effective vaccine design. In this report, the isolation and characterization of four new human mAbs, termed MPV196, MPV201, MPV314, and MPV364, are described. Among the four mAbs, MPV364 was found to be the most potent neutralizing mAb in vitro Binding studies with monomeric and trimeric hMPV F revealed that MPV364 had the weakest binding affinity for monomeric hMPV F compared to the other three mAbs, yet binding experiments with trimeric hMPV F showed limited differences in binding affinity, suggesting that MPV364 targets an antigenic site incorporating two protomers. Epitope binning studies showed that MPV364 targets antigenic site III on the hMPV F protein and competes for binding with previously discovered mAbs MPE8 and 25P13, both of which cross-react with the respiratory syncytial virus (RSV) F protein. However, MPV364 does not cross-react with the RSV F protein, and the competition profile suggests that it binds to the hMPV F protein in a binding pose slightly shifted from mAbs MPE8 and 25P13. MPV364 was further assessed in vivo and was shown to substantially reduce viral replication in the lungs of BALB/c mice. Overall, these data reveal a new binding region near antigenic site III of the hMPV F protein that elicits potent neutralizing hMPV F-specific mAbs and provide a new panel of neutralizing mAbs that are candidates for therapeutic development.IMPORTANCE Recent progress in understanding the human immune response to respiratory syncytial virus has paved the way for new vaccine antigens and therapeutics to prevent and treat disease. Progress toward understanding the immune response to human metapneumovirus (hMPV) has lagged behind, although hMPV is a leading cause of lower respiratory tract infection in children. In this report, we advanced the field by isolating a panel of human mAbs to the hMPV F protein. One potent neutralizing mAb, MPV364, targets antigenic site III on the hMPV F protein and incorporates two protomers into its epitope yet is unique from previously discovered site III mAbs, as it does not cross-react with the RSV F protein. We further examined MPV364 in vivo and found that it limits viral replication in BALB/c mice. Altogether, these data provide new mAb candidates for therapeutic development and provide insights into hMPV vaccine development.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Epitopos de Linfócito B/imunologia , Metapneumovirus/imunologia , Proteínas Virais de Fusão/imunologia , Sítios de Ligação , Mapeamento de Epitopos , Humanos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...