Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nutr ; 134(9): 2359-64, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15333729

RESUMO

The microflorae in the intestine of breast-fed infants are distinct from those that typically populate the intestine of formula-fed infants. Although the acquisition of passive immunity through breast-feeding may play a critical role in influencing the pattern of bacterial colonization of the gut, the precise mechanisms underlying the differences in the commensal microflorae of breast and formula-fed children have not been established. We hypothesized that the assemblage of commensal microflorae in suckling and weaned mice may be influenced by the maternal adaptive immune system. To test this hypothesis, we analyzed the intestinal microflorae of mice reared in the presence (wild-type) or absence of an intact maternal immune system (T- and B-cell deficient). Several types of bacteria (Lactobacillus, Enterococcus, Clostridium perfringens, Bifidobacterium, and Bacteroides) were isolated and enumerated from both the small and large intestine of 10-, 18-, 25- and 40- to 60-d old mice using selective media. The densities of bacteria were significantly lower in the small intestine of weaned mice that were reared by wild-type (WT) compared with immunodeficient (ID) dams. However, the microflorae were generally more abundant in the large intestine of suckling pups reared by WT compared with ID dams. Our results indicate that intestinal microflorae change throughout the suckling phase of development and that the maternal adaptive immune system influences the pattern and abundance of bacteria within the gut in an age- and site-specific manner.


Assuntos
Animais Lactentes/microbiologia , Bactérias/isolamento & purificação , Imunidade , Intestino Grosso/microbiologia , Intestino Delgado/microbiologia , Mães , Envelhecimento/imunologia , Animais , Animais Lactentes/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Feminino , Síndromes de Imunodeficiência/fisiopatologia , Intestino Grosso/crescimento & desenvolvimento , Intestino Delgado/crescimento & desenvolvimento , Lactação , Camundongos , Desmame
2.
Am J Physiol Gastrointest Liver Physiol ; 285(4): G714-25, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12969828

RESUMO

Numerous genes expressed by intestinal epithelial cells are developmentally regulated, and the influence that adaptive (AI) and passive (PI) immunity have in controlling their expression has not been evaluated. In this study, we tested the hypothesis that both PI and AI influenced enterocyte gene expression by developing a breeding scheme that used T and B cell-deficient recombination-activating gene (RAG) mice. RNA was isolated from the liver and proximal/distal small intestine at various ages, and the steady-state levels of six different transcripts were evaluated by RNase protection assay. In wild-type (WT) pups, all transcripts [Fc receptor of the neonate (FcRn), polymeric IgA receptor (pIgR), GLUT5, lactase-phlorizin hydrolase (lactase), apical sodium-dependent bile acid transporter (ASBT), and Na+/glucose cotransporter (SGLT1)] studied were developmentally regulated at the time of weaning, and all transcripts except ASBT had the highest levels of expression in the proximal small intestine. In WT suckling pups reared in the absence of PI, pIgR mRNA levels were increased 100% during the early phase of development. In mice lacking AI, the expression of pIgR and lactase were significantly attenuated, whereas FcRn and GLUT5 levels were higher compared with WT mice. Finally, in the absence of both passive and active immunity, expression levels of pIgR and lactase were significantly lower than similarly aged WT mice. In summary, we report that the adaptive and passive immune status of mice influences steady-state mRNA levels of several important, developmentally regulated enterocyte genes during the suckling and weaning periods of life.


Assuntos
Enterócitos/imunologia , Enterócitos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Imunidade , Transportadores de Ânions Orgânicos Dependentes de Sódio , Simportadores , Animais , Animais Lactentes , Linfócitos B/imunologia , Proteínas de Transporte/genética , Enterócitos/química , Genes RAG-1/genética , Genes RAG-1/imunologia , Transportador de Glucose Tipo 5 , Imunidade Ativa/fisiologia , Imunidade Materno-Adquirida/fisiologia , Intestino Delgado/química , Lactase-Florizina Hidrolase/genética , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Transporte de Monossacarídeos/genética , RNA Mensageiro/análise , Receptores Fc/genética , Transportador 1 de Glucose-Sódio , Linfócitos T/imunologia , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...