Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 4(1): 276, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658617

RESUMO

In this work, we are reporting that "Shock and Kill", a therapeutic approach designed to eliminate latent HIV from cell reservoirs, is extrapolatable to cancer therapy. This is based on the observation that malignant cells express a spectrum of human endogenous retroviral elements (HERVs) which can be transcriptionally boosted by HDAC inhibitors. The endoretroviral gene HERV-V2 codes for an envelope protein, which resembles syncytins. It is significantly overexpressed upon exposure to HDAC inhibitors and can be effectively targeted by simultaneous application of TLR7/8 agonists, triggering intrinsic apoptosis. We demonstrated that this synergistic cytotoxic effect was accompanied by the functional disruption of the TLR7/8-NFκB, Akt/PKB, and Ras-MEK-ERK signalling pathways. CRISPR/Cas9 ablation of TLR7 and HERV-V1/V2 curtailed apoptosis significantly, proving the pivotal role of these elements in driving cell death. The effectiveness of this new approach was confirmed in ovarian tumour xenograft studies, revealing a promising avenue for future cancer therapies.


Assuntos
Adjuvantes Imunológicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Retrovirus Endógenos/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Receptor 7 Toll-Like/agonistas , Ativação Viral/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Depsipeptídeos/farmacologia , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Feminino , Humanos , Imiquimode/farmacologia , Imunidade Inata/efeitos dos fármacos , Camundongos Nus , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/virologia , Pteridinas/farmacologia , Transdução de Sinais , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Células Tumorais Cultivadas , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Vorinostat/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cancer Res ; 78(9): 2318-2331, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29440172

RESUMO

The effects of anticancer treatments on cell heterogeneity and their proliferative potential play an important role in tumor persistence and metastasis. However, little is known about de-polyploidization, cell fate, and physiologic stemness of the resulting cell populations. Here, we describe a distinctive cell type termed "pregnant" P1 cells found within chemotherapy-refractory ovarian tumors, which generate and gestate daughter generation Gn cells intracytoplasmically. Release of Gn cells occurred by ejection through crevices in the P1 cell membrane by body contractions or using a funiculus-like structure. These events characterized a not yet described mechanism of cell segregation. Maternal P1 cells were principally capable of surviving parturition events and continued to breed and nurture Gn progenies. In addition, P1 cells were competent to horizontally transmit offspring Gn cells into other specific proximal cells, injecting them to receptor R1 cells via cell-cell tunneling. This process represents a new mechanism used by tumor cells to invade surrounding tissues and ensure life cycles. In contrast to the pregnant P1 cells with low expression of stem cell markers despite their physiologic stemness, the first offspring generations of daughter G1 cells expressed high levels of ovarian cancer stem cell markers. Furthermore, both P1 and Gn cells overexpressed multiple human endogenous retroviral envelope proteins. Moreover, programmed death-ligand 1 and the immunosuppressive domain of the retroviral envelope proteins were also overexpressed in P1 cells, suggesting effective protection against the host immune system. Together, our data suggest that P1 oncogenerative cancer cells exhibit a not yet described cell biological mechanism of persistence and transmission of malignant cells in patients with advanced cancers.Significance: P1 oncogenerative cell entities express low levels of CSC markers, which are characteristic of their histological origin. Cancer Res; 78(9); 2318-31. ©2018 AACR.


Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomarcadores , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Mitocôndrias/metabolismo , Modelos Biológicos , Neoplasias/genética , Neoplasias/imunologia , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas
3.
Surg Endosc ; 32(1): 166-174, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28643076

RESUMO

BACKGROUND: Although recent data are contradictory, it is still claimed that Pressurized Intra-Peritoneal Aerosol Chemotherapy (PIPAC) would deliver an aerosol which distributes homogeneously throughout the entire abdominal cavity. METHODS: 99mTc-Pertechnetat was administered in four postmortem swine using either PIPAC or liquid intra-peritoneal chemotherapy (IPC). The animals were examined by planar scintigraphy and SPECT/CT. Planar distribution images were divided into four regions of interest (ROIs: right/left upper and lower abdominal quadrant). SPECT/CT slices were scanned for areas of intense nuclide accumulation ("hot spots"). The percentage of relative distribution for planar scintigraphy was calculated by dividing the summed individual counts of each ROI by total counts measured in the entire abdominal cavity. The relative distribution of the "hot spots" was analyzed by dividing the counts of the local volume of interest (VOI) by the summed volume counts measured in the entire abdominal cavity. RESULTS: In all four animals, planar scintigraphy showed inhomogeneous nuclide distribution. After PIPAC only 8-10% of the delivered nuclide was detected in one ROI with a mean deviation of 40% and 74% from a uniform nuclide distribution pattern. In all animals, SPECT/CT revealed "hot spots" beneath the PIPAC Micropump, catheter tip, and in the cul-de-sac region which comprise about 25% of the total amount of delivered nuclide in 2.5% of the volume of the entire abdominal cavity. CONCLUSIONS: Our present data indicate that the intra-abdominal aerosol distribution pattern of PIPAC therapy is non-homogeneous and that the currently applied technology has still not overcome the problem of inhomogeneous drug distribution of IPC.


Assuntos
Antineoplásicos/administração & dosagem , Peritônio/diagnóstico por imagem , Pertecnetato Tc 99m de Sódio/farmacocinética , Aerossóis/farmacocinética , Animais , Antineoplásicos/farmacocinética , Infusões Parenterais/métodos , Peritônio/metabolismo , Cintilografia/métodos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Suínos , Distribuição Tecidual
4.
Oncotarget ; 8(56): 95945-95964, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29221178

RESUMO

About 8 % of the human genome consists of human endogenous retroviruses (HERVs), which are relicts of ancient exogenous retroviral infections incurred during evolution. Although the majority of HERVs have functional gene defects or epigenetic modifications, many of them are still able to produce retroviral proteins that have been proposed to be involved in cellular transformation and cancer development. We found that, in chemo-resistant U87RETO glioblastoma cells, cytotoxic stress induced by etoposide promotes accumulation and large-scale fission of mitochondria, associated with the detection of HERV-WE1 (syncytin-1) and HERV-FRD1 (syncytin-2) in these organelles. In addition, mitochondrial preparations also contained the corresponding receptors, i.e. ASCT2 and MFSD2. We clearly demonstrated that mitochondria associated with HERV-proteins were shuttled between adjacent cancer cells not only via tunneling tubes, but also by direct cellular uptake across the cell membrane. Furthermore, anti-syncytin-1 and anti-syncytin-2 antibodies were able to specifically block this direct cellular uptake of mitochondria even more than antibodies targeting the cognate receptors. Here, we suggest that the association of mitochondria with syncytin-1/syncytin-2 together with their respective receptors could represent a novel mechanism of cell-to-cell transfer. In chemotherapy-refractory cancer cells, this might open up attractive avenues to novel mitochondria-targeting therapies.

6.
In Vivo ; 31(3): 329-334, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28438859

RESUMO

AIM: To observe and document the migration of living cells by time-lapse videography, we constructed a low-budget system based on a common inverted microscope. MATERIALS AND METHODS: Long-term observation of six-well plates is enabled through maintenance of cell culture conditions (5% CO2 in air at 37°C). Points of interest can be revisited in definable intervals with <1 µm repositioning error. Digital photographs from each programmed time point are paired with environmental data and combined into a record. RESULTS: We used this new chamber to observe the migration of various cell lines. The design represents a good compromise between low cost and good precision. Detailed analyses verified that the environmental conditions were appropriately maintained, enabling long-term observation of viable cells. The stimulating influence of irradiation with photons (radiotherapy) on cellular motility of glioblastoma cells is presented. CONCLUSION: This study demonstrates that useful videographic systems can be constructed at low cost.


Assuntos
Movimento Celular/fisiologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Glioblastoma/patologia , Humanos , Microscopia/métodos , Imagem com Lapso de Tempo/métodos
7.
Anticancer Res ; 37(4): 1677-1680, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28373428

RESUMO

BACKGROUND: This study was performed to evaluate the impact of whole-abdominal irradiation on local penetration of doxorubicin into the peritoneum and the abdominal organs in a post-mortem swine model. MATERIALS AND METHODS: Doxorubicin was aerosolized into the abdominal cavity of swine at a pressure of 12 mmHg CO2 at room temperature (25°). One swine was subjected to pressurized intraperitoneal aerosol chemotherapy (PIPAC) using Micropump© without irradiation; the second one received 2 Gy and the third one 7 Gy whole-abdominal irradiation, 15 min prior to PIPAC application. Samples of the peritoneal surface were extracted at different positions from within the abdominal cavity. In-tissue doxorubicin penetration was measured using fluorescence microscopy on frozen thin sections. RESULTS: The depth of penetration of doxorubicin was found to be wide-ranging, between 17 µm on the surface of the stomach and 348 µm in the small intestine. The penetration depth into the small intestine was 348 µm, 312 µm and 265 µm for PIPAC alone, PIPAC with 2 Gy irradiation and PIPAC with 7 Gy irradiation, respectively (p<0.05). The penetration into the liver was 64 µm, 55 µm and 40 µm, respectively (p=0.05). CONCLUSION: Irradiation was not found to increase the depth of doxorubicin penetration into normal tissue in the post-mortem swine model. A reduction of doxorubicin penetration was observed after application of higher irradiation doses. Further studies are warranted to determine if irradiation can be used safely as chemopotentiating agent for patients with peritoneal metastases treated with PIPAC.


Assuntos
Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Peritônio/efeitos dos fármacos , Irradiação Corporal Total , Administração por Inalação , Aerossóis , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Masculino , Peritônio/patologia , Peritônio/efeitos da radiação , Mudanças Depois da Morte , Pressão , Doses de Radiação , Suínos , Distribuição Tecidual
8.
World J Surg Oncol ; 15(1): 43, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28183319

RESUMO

BACKGROUND: Pressurized intraperitoneal aerosol chemotherapy (PIPAC) has been recently reported as a new approach for intraperitoneal chemotherapy (IPC). By means of a patented micropump, the liquid chemotherapy is delivered into the peritoneal cavity as an aerosol which is supposed to achieve "gas-like" distribution. However, recent data report that the fraction of the submicron aerosol (gas-like) is less than 3 vol% of the total amount of aerosolized chemotherapy. Until today, possible modifications of treatment parameters during PIPAC with the aim of improving therapeutic outcomes have not been studied yet. This study aims to establish an in vitro PIPAC model to explore the cytotoxic effect of the submicron aerosol fraction and to investigate the impact of different application parameters on the cytotoxic effect of PIPAC on human colonic cancer cells. METHODS: An in vitro model using HCT8 colon adenocarcinoma wild-type cells (HCT8WT) and multi-chemotherapy refractory subline (HCT8RT) was established. Different experimental parameters such as pressure, drug dosage, time exposure, and system temperature were monitored in order to search for the conditions with a higher impact on cell toxicity. Cell proliferation was determined by means of colorimetric MTT assay 48 h following PIPAC exposures. RESULTS: Standard operational parameters applied for PIPAC therapy depicted a cytotoxic effect of the submicron aerosol fraction generated by the PIPAC micropump. We also observed that increasing pressure significantly enhanced tumor cell toxicity in both wild-type and chemotherapy-resistant cells. A maximum of cytotoxicity was observed at 15 mmHg. Pressure >15 mmHg did not show additional cytotoxic effect on cells. Increased oxaliplatin dosage resulted in progressively higher cell toxicity as expected. However, in resistant cells, a significant effect was only found at higher drug concentrations. Neither an extension of exposure time nor an increase in temperature of the aerosolized chemotherapy solution added an improvement in cytotoxicity. CONCLUSIONS: In this in vitro PIPAC model, the gas-like PIPAC aerosol fraction showed a cytotoxic effect which was enhanced by higher intra-abdominal pressure with a maximum at 15 mmHg. Similar findings were observed for drug dose escalation. A phase I dose escalation study is currently performed at our institution. However, increasing the intra-abdominal pressure might be a first and simple way to enhance the cytotoxic effect of PIPAC therapy which needs further clinical investigations.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Compostos Organoplatínicos/farmacologia , Peritônio/efeitos dos fármacos , Aerossóis , Antineoplásicos/administração & dosagem , Humanos , Técnicas In Vitro , Injeções Intraperitoneais , Compostos Organoplatínicos/administração & dosagem , Oxaliplatina , Pressão , Células Tumorais Cultivadas
9.
Surg Endosc ; 31(4): 1778-1784, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27631320

RESUMO

BACKGROUND: Pressurized intraperitoneal aerosol chemotherapy (PIPAC) is gaining acceptance in clinical practice, but detailed information about the microinjection pump (MIP®), the generated aerosol and drug distribution is missing. ANALYTICAL METHODS: Ex vivo granulometric analyses by means of laser diffraction spectrometry were performed for MIP® aerosol characterization. Beside the standard operation conditions, the impact of the volumetric liquid flow rate on the aerosol characteristics was investigated with different liquids. Granulometric results as well as the local drug distribution were verified by ex vivo gravimetric analyses. On the basis of determined MIP® characteristics, the aerosol droplet size, which is necessary for a homogenous intra-abdominal drug distribution, was calculated. RESULTS: Granulometric analyses showed that the MIP® aerosol consists of a bimodal volume-weighted particle size distribution (PSD3) with a median droplet diameter of x 50,3 = 25 µm. Calculations reveal that the droplet size for a homogenous intra-abdominal drug distribution during PIPAC therapy should be below 1.2 µm. We show that >97.5 vol% of the aerosolized liquid is delivered as droplets with ≥3 µm in diameter, which are primarily deposited on the surface beneath the MIP® by gravitational settling and inertial impaction. These findings were confirmed by ex vivo gravimetric analyses, where more than 86.0 vol% of the aerosolized liquid was deposited within a circular area with a diameter of 15 cm. CONCLUSIONS: The granulometric aerosol properties, as well as the aerodynamic conditions achieved by standard MIP® operation, do not support the idea of widespread or homogenous drug distribution in the abdominal cavity.


Assuntos
Aerossóis/administração & dosagem , Bombas de Infusão , Microinjeções/instrumentação , Aerossóis/química , Humanos , Técnicas In Vitro , Injeções Intraperitoneais , Pressão
10.
Anticancer Res ; 36(9): 4595-600, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27630300

RESUMO

BACKGROUND/AIM: Pressurized intraperitoneal aerosol chemotherapy (PIPAC) is a novel clinical approach to the treatment of peritoneal carcinomatosis. A well-established, not anatomic ex vivo PIPAC model was used to investigate the influence of changes in internal pressure, distance of the Micropump(©) (MIP) to the distributing surface and the drug concentration on the penetration depth of doxorubicin in the target tissue. MATERIALS AND METHODS: Doxorubicin was aerosolized in an ex vivo PIPAC model using a hermetic container system mimicking the abdominal cavity. Fresh post-mortem swine peritoneum was cut into proportional samples. Tissue specimens were spatially placed at 4 different spots within the box: P1, on the distributing surface of the box, directly opposite to MIP; P2, on the side wall of the box; P3, on the ceiling of the box; P4, on the distributing surface with a partial cover. Impact of changes in the following parameters were analyzed and compared with clinically established values (CEVs) at our center: pressure (CEV=12 mmHg), distance of the MIP from the distributing surface (CEV=8 cm) and doxorubicin concentration (CEV=3 mg/50 ml). In-tissue doxorubicin penetration depth was measured using fluorescence microscopy on frozen thin sections. RESULTS: Tissue positioning in the box had a significant impact on drug penetration after PIPAC with CEV. Under CEV conditions, the highest drug penetration depth was observed in the tissue placed on the distributing surface directly opposite to the MIP (P1: 351 µm, P2: 77 µm, P3: 66 µm, P4: 34 µm). A closer positioning of the MIP lead to a significantly higher mean depth penetration of doxorubicin in the P1 in contrast to other samples in which a reduced drug penetration was observed (1 cm vs. 8 cm distance from MIP to the distributing surface, P1 at 1 cm: 469 µm vs. P1 at 8 cm: 351 µm, p<0.0001; P2 at 1 cm: 25 µm vs. P2 at 8 cm: 77 µm, p<0.0001; P3 at 1 cm: 21 µm vs. P3 at 8 cm: 66 µm, p<0.001; P4 at 1 cm: 13 µm vs. P4 at 8 cm: 39 µm, p=0.021). Higher doxorubicin concentrations led to a highly significant increase of drug penetration in P1 (1 cm vs. 8 cm, p<0.0001), but only a little significant increase in other samples. An increase of internal pressure did not show a significant increase in penetration depth of doxorubicin. CONCLUSION: Our ex vivo data suggest that a higher pressure does not increase the penetration deepness of doxorubicin. Higher drug dosage and a closer positioning of the MIP toward the target lead to a higher penetration of doxorubicin within the samples. A more homogeneous penetration within all targets cannot be achieved by changing drug concentration, position of the nozzle or pressure increase.


Assuntos
Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Neoplasias Peritoneais/tratamento farmacológico , Aerossóis , Animais , Carcinoma , Doxorrubicina/química , Técnicas In Vitro , Laparoscopia , Microscopia de Fluorescência , Peritônio/efeitos dos fármacos , Pressão , Suínos
11.
J Cancer Res Clin Oncol ; 142(11): 2275-80, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27590613

RESUMO

BACKGROUND: Pressurized intraperitoneal aerosol chemotherapy (PIPAC) is a novel approach delivering intraperitoneal chemotherapy by means of a pressurized aerosol. This study was conducted to evaluate the distribution pattern of doxorubicin in the abdominal cavity after PIPAC in a postmortem swine model. METHODS: Doxorubicin was aerosolized through a Micropump© (MIP) into the peritoneal cavity of two swines at a pressure of 12 mm Hg CO2 and 32 °C. To measure the distribution of the drug, 9 different positions within the abdominal cavity were sampled. In-tissue doxorubicin penetration was evaluated using fluorescence microscopy on frozen thin sections. RESULTS: A maximum of drug penetration was observed in the area around the MIP. The penetration in the small intestine reached a depth of 349 ± 65 µm. Penetration depth in the right upper abdomen and left upper abdomen were 349 ± 65 and 140 µm ± 26 µm, respectively. Distant areas to the MIP showed variable penetration rates between 50 and 150 µm. CONCLUSIONS: Doxorubicin reached all areas within the peritoneum. Highest penetration rates were measured in the area around the Micropump. Further studies are warranted to evaluate and optimize the distribution and penetration of cytotoxic agent into the tissue after PIPAC.


Assuntos
Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Aerossóis , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Sistemas de Liberação de Medicamentos/instrumentação , Bombas de Infusão , Infusões Parenterais , Suínos , Distribuição Tecidual
12.
In Vivo ; 30(5): 593-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27566077

RESUMO

AIM: To compare the impact of single fractional with bi-fractional irradiation on the depth of doxorubicin penetration into the normal tissue after pressurized intra-peritoneal aerosol chemotherapy (PIPAC) in our ex vivo model. MATERIALS AND METHODS: Fresh post mortem swine peritoneum was cut into 12 proportional sections. Two control samples were treated with PIPAC only (no irradiation), one sample on day 1, the other on day 2. Five samples were irradiated with 1, 2, 4, 7 or 14 Gy followed by PIPAC. Four samples were treated on day one with 0.5, 1, 2, 3.5 or 7 Gy and with the same radiation dose 24 h later followed by PIPAC. Doxorubicin was aerosolized in an ex vivo PIPAC model at 12 mmHg/36°C. In-tissue doxorubicin penetration was measured using fluorescence microscopy on frozen thin sections. RESULTS: Doxorubicin penetration (DP) after PIPAC for the control samples was 407 µm and 373 µm, respectively. DP for samples with single fraction irradiation was 396 µm after 1 Gy, 384 µm after 2 Gy, 327 µm after 4 Gy, 280 µm after 7 Gy and 243 µm after 14 Gy. DP for samples with 2 fractions of irradiation was 376 µm after 0.5+0.5 Gy, 363 µm after 1+1 Gy, 372 µm after 2+2 Gy, 341 µm after 3.5+3.5 and 301 µm after 7+7 Gy irradiation. Fractionating of the irradiation did not significantly change DP into normal tissue. CONCLUSION: Irradiation does not increase the penetration depth of doxorubicin into the normal tissue but might have a limiting impact on penetration and distribution of doxorubicin. Further studies are warranted to investigate the impact of addition of irradiation to PIPAC of tumor cells and to find out if irradiation can be used safely as chemopotenting agent for patients with peritoneal metastases treated with PIPAC.


Assuntos
Doxorrubicina/administração & dosagem , Neoplasias Peritoneais/tratamento farmacológico , Peritônio/efeitos dos fármacos , Administração por Inalação , Animais , Modelos Animais de Doenças , Humanos , Neoplasias Peritoneais/patologia , Neoplasias Peritoneais/radioterapia , Neoplasias Peritoneais/secundário , Peritônio/patologia , Peritônio/efeitos da radiação , Radiação , Suínos
13.
J Cancer ; 7(8): 910-4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27313780

RESUMO

BACKGROUND: This study was performed to assess the impact of irradiation on the tissue penetration depth of doxorubicin delivered during Pressurized Intra-Peritoneal Aerosol Chemotherapy (PIPAC). METHODS: Fresh post mortem swine peritoneum was cut into 10 proportional sections. Except for 2 control samples, all received irradiation with 1, 2, 7 and 14 Gy, respectively. Four samples received PIPAC 15 minutes after irradiation and 4 other after 24 hours. Doxorubicin was aerosolized in an ex-vivo PIPAC model at 12 mmHg/36°C. In-tissue doxorubicin penetration was measured using fluorescence microscopy on frozen thin sections. RESULTS: Doxorubicin penetration after PIPAC (15 minutes after irradiation) was 476 ± 74 µm for the control sample, 450 ± 45µm after 1 Gy (p > 0.05), 438 ± 29 µm after 2 Gy (p > 0.05), 396 ± 32 µm after 7 Gy (p = 0.005) and 284 ± 57 after 14 Gy irradiation (p < 0.001). The doxorubicin penetration after PIPAC (24 hours after irradiation) was 428 ± 77 µm for the control sample, 393 ± 41 µm after 1 Gy (p > 0.05), 379 ± 56 µm after 2 Gy (p > 0.05), 352 ± 53 µm after 7 Gy (p = 0.008) and 345 ± 53 after 14 Gy irradiation (p = 0.001). CONCLUSIONS: Higher (fractional) radiation dose might reduce the tissue penetration depth of doxorubicin in our ex-vivo model. However, irradiation with lower (fractional) radiation dose does not affect the tissue penetration negatively. Further studies are warranted to investigate if irradiation can be used safely as chemopotenting agent for patients with peritoneal metastases treated with PIPAC.

14.
Front Oncol ; 6: 64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27064200

RESUMO

PURPOSE: The purpose of this study is to link both numeric and structural chromosomal aberrations to the effectiveness of radiotherapy in chemotherapy refractory tumor cells. MATERIALS AND METHODS: Neuroblastoma (LAN-1) and 79HF6 glioblastoma cells derived from patients and their chemoresistant sublines were artificially cultured as neurospheres and irradiated by X-rays and heavy ions sources. All the cell lines were irradiated by Carbon-SIS with LET of 100 keV/µm. However, 79HF6 cells and LAN-1 cells were also irradiated by Carbon-UNILAC with LET of 168 keV/µm and Nickel ions with LET of 174 keV/µm, respectively. The effect of radiation on the survival and proliferation of cells was addressed by standard clonogenic assays. In order to analyze cell karyotype standard Giemsa staining, multicolor fluorescence in situ hybridization (mFISH) and multicolor banding (mBAND) techniques were applied. RESULTS: Relative biological effectiveness values of heavy ion beams relative to X-rays at the D10 values were found between 2.3 and 2.6 with Carbon-SIS and Nickel for LAN-1 and between 2.5 and 3.4 with Carbon-SIS and Carbon-UNILAC for 79HF6 cells. Chemorefractory LAN-1(RETO) cells were found more radioresistant than untreated LAN-1(WT) cells. 79HF6(RETO) glioblastoma cells were found more radiosensitive than cytostatic sensitive cells 79HF6(WT). Sphere formation assay showed that LAN-1(RETO) cells were able to form spheres in serum-free culture, whereas 79HF6 cells could not. Most of 79HF6(WT) cells revealed a number of 71-90 chromosomes, whereas 79HF6(RETO) revealed a number of 52-83 chromosomes. The majority of LAN-1(WT) cells revealed a number of 40-44 chromosomes. mFISH analysis showed some stable aberrations, especially on chromosome 10 as judged by the impossibility to label this region with specific probes. This was corroborated using mBAND analysis. CONCLUSION: Heavy ion irradiation was more effective than X-ray in both cytostatic naive cancer and chemoresistant cell lines. LAN-1(RETO) chemoresistant neuroblastoma cells were found to be more radioresistant than the cytostatic naive cells (LAN-1(WT)), whereas this effect was not found in 79HF6 cells.

15.
Ann Surg Oncol ; 23(4): 1220-4, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26553440

RESUMO

BACKGROUND: Pressurized intraperitoneal aerosol chemotherapy (PIPAC) is a novel approach to delivering intraperitoneal chemotherapy (IPC) as a pressurized aerosol. One of the assumed advantages is the homogeneous drug distribution in the intraperitoneal cavity compared with conventional liquid in situ chemotherapy. However, to date, the spatial drug distribution pattern of PIPAC has not been investigated in detail. METHODS: Doxorubicin was aerosolized in an ex vivo PIPAC model containing native fresh tissue samples of swine peritoneum at a pressure of 12 mmHg CO2 at 36 °C. In the center of the top cover of the PIPAC chamber, a PIPAC micropump was installed. Tissue specimens were placed as follows: (A) bottom of the plastic box, (B) margin of the aerosol jet covered with a bilaterally open tunnel, (C) side wall, and (D) top cover, respectively. In-tissue doxorubicin penetration was measured using fluorescence microscopy on frozen thin sections. RESULTS: The depth of doxorubicin penetration was found to be significantly higher in tissues directly exposed to the aerosol jet (A: 215 ± 79 µm) compared with the side wall (C: 77 ± 18 µm; p < 0.01) and the top of the box (D: 65 ± 17 µm; p < 0.01). The poorest penetration was observed for peritoneal tissue covered under a bilaterally open plastic tunnel (B: 34 ± 19 µm; p < 0.001). CONCLUSIONS: The study data suggest that the spatial drug distribution pattern of ex vivo PIPAC is heterogeneous.


Assuntos
Aerossóis , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Peritônio/metabolismo , Animais , Laparoscopia , Peritônio/efeitos dos fármacos , Pressão , Suínos , Distribuição Tecidual
16.
J Exp Clin Cancer Res ; 34: 81, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26260344

RESUMO

BACKGROUND: Endoretroviruses account for circa 8 % of all transposable elements found in the genome of humans and other animals. They represent a genetic footprint of ancestral germ-cell infections of exoviruses that is transmittable to the progeny by Mendelian segregation. Traces of human endogenous retroviruses are physiologically expressed in ovarial, testicular and placental tissues as well as in stem cells. In addition, a number of these fossil viral elements have also been related to carcinogenesis. However, a relation between endoretroviruses expression and chemoresistance has not been reported yet. METHODS: Twenty colorectal carcinoma patient samples were scrutinized for HERV-WE1 and HERV-FRD1 endoretroviruses using immunohistochemical approaches. In order to search for differential expression of these elements in chemotherapy refractory cells, a resistant HCT8 colon carcinoma subline was developed by serial etoposide exposure. Endoretroviral elements were detected by immunocytochemical staining, qPCR and ELISA. IC50-values of antiviral and cytostatic drugs in HCT8 cells were determined by MTT proliferation assay. The antivirals-cytostatics interaction was evaluated by the isobologram method. RESULTS: In this work, we show for the first time that HERV-WE1, HERV-FRD1, HERV-31, and HERV-V1 are a) simultaneously expressed in treatment-naïve colon carcinoma cells and b) upregulated after cytostatic exposure, suggesting that these retroviral elements are intimately related to chemotherapy resistance. We found a number of antiviral drugs to have cytotoxic activity and the ability to force the downregulation of HERV proteins in vitro. We also demonstrate that the use of different antiviral compounds alone or in combination with anticancer agents results in a synergistic antiproliferative effect and downregulation of different endoretroviral elements in highly chemotherapy-resistant colorectal tumor cells. CONCLUSIONS: Enhanced HERV-expression is associated with chemoresistance in colon carcinomas which can be overcome by antiviral drugs alone or in combination with anticancer drugs. Therefore, the introduction of antiviral compounds to the current chemotherapy regimens potentially improves patient outcomes.


Assuntos
Neoplasias Colorretais/genética , Retrovirus Endógenos/genética , Animais , Antivirais , Linhagem Celular Tumoral , Humanos , Ativação Transcricional
17.
DNA Cell Biol ; 33(11): 749-74, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25126674

RESUMO

Until recently, acquired resistance to cytostatics had mostly been attributed to biochemical mechanisms such as decreased intake and/or increased efflux of therapeutics, enhanced DNA repair, and altered activity or deregulation of target proteins. Although these mechanisms have been widely investigated, little is known about membrane barriers responsible for the chemical imperviousness of cell compartments and cellular segregation in cytostatic-treated tumors. In highly heterogeneous cross-resistant and radiorefractory cell populations selected by exposure to anticancer agents, we found a number of atypical recurrent cell types in (1) tumor cell cultures of different embryonic origins, (2) mouse xenografts, and (3) paraffin sections from patient tumors. Alongside morphologic peculiarities, these populations presented cancer stem cell markers, aberrant signaling pathways, and a set of deregulated miRNAs known to confer both stem-cell phenotypes and highly aggressive tumor behavior. The first type, named spiral cells, is marked by a spiral arrangement of nuclei. The second type, monastery cells, is characterized by prominent walls inside which daughter cells can be seen maturing amid a rich mitochondrial environment. The third type, called pregnant cells, is a giant cell with a syncytium-like morphology, a main nucleus, and many endoreplicative functional progeny cells. A rare fourth cell type identified in leukemia was christened shepherd cells, as it was always associated with clusters of smaller cells. Furthermore, a portion of resistant tumor cells displayed nuclear encapsulation via mitochondrial aggregation in the nuclear perimeter in response to cytostatic insults, probably conferring imperviousness to drugs and long periods of dormancy until nuclear eclosion takes place. This phenomenon was correlated with an increase in both intracellular and intercellular mitochondrial traffic as well as with the uptake of free extracellular mitochondria. All these cellular disorders could, in fact, be found in untreated tumor cells but were more pronounced in resistant entities, suggesting a natural mechanism of cell survival triggered by chemical injury, or a primitive strategy to ensure stemming, self-renewal, and differentiation under adverse conditions, a fact that may play a significant role in chemotherapy outcomes.


Assuntos
Citostáticos/farmacologia , Mitocôndrias/fisiologia , Neoplasias/ultraestrutura , Células-Tronco Neoplásicas/ultraestrutura , Animais , Antineoplásicos Fitogênicos/farmacologia , Transporte Biológico , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Resistencia a Medicamentos Antineoplásicos , Etoposídeo/farmacologia , Feminino , Humanos , Camundongos , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Neoplasias/genética , Neoplasias/patologia , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células Tumorais Cultivadas
18.
Int J Clin Pharmacol Ther ; 52(9): 787-801, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24902844

RESUMO

Relapse of cancer months or years after an apparently successful therapy is probably caused by cancer stem cells (CSCs) due to their intrinsic features like dormant periods, radiorefraction, and acquired multidrug resistance (MDR) phenotypes, among other mechanisms of cellular drug evasiveness. Thus, the lack of currently efficacious interventions remains a major problem in the treatment of malignancies, together with the inability of existing drugs to destroy specifically CSCs. Neuroblastomas per se are highly chemotherapy-refractory extracranial tumors in infants with very low survival rates. So far, no effective cytostatics against this kind of tumors are clinically available. Therefore, we have put much effort into the development of agents to efficiently combat this malignancy. For this purpose, we tested several compounds isolated from Cuban propolis on induced CSCs (iCSC) derived from LAN-1 neuroblastoma cells which expressed several characteristics of tumor-initiating cells both in in-vitro and in-vivo models. Some small molecules such as flavonoids and polycyclic polyprenylated acylphloroglucinols (PPAP) were isolated using successive RT-HPLC cycles and identified employing mass spectrometry and NMR spectroscopic techniques. Their cytotoxicity was first screened in sensitive cell systems by MTT proliferation assays and afterwards studied in less sensitive neuroblastoma iCSC models. We found several compounds with considerable anti-iCSC activity, most of them belonging to the PPAP class. The majority of the compounds act in a pleiotropic manner on the molecular biology of tumors although their specific targets remain unclear. Nevertheless, two substances, one of them a flavonoid, induced a strong disruption of tubulin polymerization. In addition, an unknown compound strongly inhibited replicative enzymes like toposimerases I/II and DNA polymerase. Here, we report for the first time cytotoxic activities of small molecules isolated from Caribbean propolis which could be promising therapeutics or lead structures against therapy-refractory neuroblastoma entities. *Contributed equally.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Própole/química , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Relação Dose-Resposta a Droga , Feminino , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Camundongos , Camundongos Nus , Estrutura Molecular , Células-Tronco Neoplásicas/patologia , Neuroblastoma/patologia , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...