Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(10): 25193-25204, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35015236

RESUMO

The importance of the textural and physicochemical characteristics upon the adsorption capacity of the commercial activated carbons (ACs) Coconut, Wood, Merck, Darco, and Norit towards ronidazole (RNZ) and diclofenac (DCF) from water solution was investigated thoroughly in this work. At pH = 7, Coconut AC and Wood AC presented the highest adsorption capacity towards RNZ (444 mg/g) and DCF (405 mg/g). The maximum mass of RNZ adsorbed onto Coconut AC was higher in this study than those outlined previously in other works. Besides, the maximum capacity of Wood AC for adsorbing DCF was comparable to those found for other ACs. The adsorption capacity of all the ACs was increased by surface area and was favored by incrementing the acidic site concentration. The π-π stacking interactions were the predominant adsorption mechanism for the RNZ and DCF adsorption on ACs, and the acidic sites favored the adsorption capacity by activating the π-π stacking. Electrostatic interactions did not influence the adsorption of RNZ on Coconut AC, but electrostatic repulsion decreased that of DCF on Wood AC. The adsorption of DCF on Wood AC was reversible but not that of RNZ on Coconut AC. Besides, the adsorption of RNZ and DCF on the Coconut and Wood ACs was endothermic in the range of 15-25 °C.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Carvão Vegetal/química , Ronidazole , Diclofenaco/química , Adsorção , Água/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Cinética
2.
Environ Technol ; 41(12): 1554-1567, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-30372664

RESUMO

Today, fluoride represents one of the most often found, and resilient, pollutants threatening the health of millions of people around the globe. The use of biosorbents is an interesting alternative technique for the removal of fluorine-ions. Chitosan is a natural biopolymer with surface groups capable of removing fluorine; however, their lack of mechanical stability restricts its application. In the present work, we proposed that such limitations can be overcame by forming a composite with zeolite (ZCC). A proper zeolite-to-chitosan ration must be kept to prevent a collapse of the material's capacity. Two ZCCs at ratios of 1:1 and 1:3 were formed and tested for the removal of fluoride from aqueous solution. The composites were characterized by Electron Microscopy, FT-IR, N2 physisorption, and potentiometric titration techniques. During fluoride adsorption studies, the effects of pH and temperature were analysed and thermodynamic parameters for adsorption were calculated. The results demonstrated that there is a chemical interaction between the zeolite and chitosan components leading to a superior adsorption performance than if there was a simple physical mixture of the precursors. Maximum adsorption capacities were reached using the composite material with the lowest chitosan content due to reduced constriction of the zeolite pores and a better dispersion of overall the adsorption sites. Both pH and temperature had a significant, and negative, impact on the adsorption; these effects were discussed. The present work represents an advance in the development of functional biocomposites for the removal of pollutants from aqueous solutions.


Assuntos
Quitosana , Poluentes Químicos da Água , Zeolitas , Adsorção , Fluoretos , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
3.
J Colloid Interface Sci ; 455: 194-202, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26070190

RESUMO

Various health problems associated with drinking water containing high fluoride levels, have motivated researchers to develop more efficient adsorbents to remove fluoride from water for beneficial concentrations to human health. The objective of this research was to anchor lanthanum oxyhydroxides on a commercial granular activated carbon (GAC) to remove fluoride from water considering the effect of the solution pH, and the presence of co-existing anions and organic matter. The activated carbon was modified with lanthanum oxyhydroxides by impregnation. SEM and XRD were performed in order to determine the crystal structure and morphology of the La(III) particles anchored on the GAC surface. FT-IR and pK(a)'s distribution were determined in order to elucidate both the possible mechanism of the lanthanum anchorage on the activated carbon surface and the fluoride adsorption mechanism on the modified material. The results showed that lanthanum ions prefer binding to carboxyl and phenolic groups on the activated carbon surface. Potentiometric titrations revealed that the modified carbon (GAC-La) possesses positive charge at a pH lower than 9. The adsorption capacity of the modified GAC increased five times in contrast to an unmodified GAC adsorption capacity at an initial F(-) concentration of 20 mg L(-1). Moreover, the presence of co-existing anions had no effect on the fluoride adsorption capacity at concentrations below 30 mg L(-1), that indicated high F(-) affinity by the modified adsorbent material (GAG-La).


Assuntos
Carbono/química , Água Potável/química , Fluoretos/isolamento & purificação , Lantânio/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Humanos , Concentração de Íons de Hidrogênio , Potenciometria , Eletricidade Estática
4.
J Colloid Interface Sci ; 364(2): 279-87, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21924733

RESUMO

Oxidized nitrogen-doped multiwall carbon nanotubes (ox-N-MWCNTs), oxidized multiwall carbon nanotubes (ox-MWCNTs), and oxidized single-wall carbon nanotubes (ox-SWCNTs) were evaluated via batch adsorption kinetic experiments to determine the effect of nanotube morphology on the adsorption rate of cadmium. The nanotubes were characterized by HRTEM, XRD and Raman spectroscopy. Cadmium adsorption isotherms were determined at pH 6. Analyses of the kinetic data with an external mass transport model and an intraparticle diffusion model considered two cases: (1) single nanotubes suspended in aqueous solution and (2) agglomerates of nanotubes suspended in aqueous solution. The intraparticle diffusion model produced the best fit to the experimental data. However, only the diffusivity coefficients for single nanotubes suspended in solution were similar to literature values: about 4×10(-9), 1×10(-9) and 2.4×10(-11) cm(2)/s for ox-N-MWCNTs, ox-MWCNTs and ox-SWCNTs, respectively. The morphology of the various carbon nanotubes might determine cadmium diffusivity. The high amount of sidewall pores observed in the single-walled carbon nanotubes could limit cadmium diffusion and account for the slow diffusion rate of 180 min. Conversely, the short length, small surface area and bamboo-type morphology observed with nitrogen-doped multiwall carbon nanotubes may account for the relatively fast adsorption rate of 15 min as this morphology prevents cadmium diffusion through the internal tubular space of these nanotubes.

5.
J Colloid Interface Sci ; 334(2): 124-31, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19403143

RESUMO

Carbon nanotubes are novel materials that have been investigated for diverse applications, but only a few studies have been focused on environmental issues. In this work, we report on the efficient adsorption of phenol and cadmium ions on N-doped carbon nanotubes (CNx), which have been modified in air at different temperatures. The pristine and modified CNx nanotubes were characterized by SEM, TGA, elemental analysis and their surface areas were also determined. The adsorption experiments of toxic pollutants were carried out in batch reactors at 25 degrees C. The characterization of modified CNx by these techniques showed an increase in oxygen content and surface area in comparison with the pristine CNx tubes. The individual adsorption capacity was 0.10 and 0.07 mmol/g for phenol and Cd(2+), respectively. The experimental data of the competitive adsorption of phenol and Cd(2+) revealed that the cadmium removal was favored as the phenol concentration increased, whereas the phenol adsorption capacity was slightly affected at any cadmium concentration. These results suggest that modified CNx tubes have a great potential in environmental applications as adsorbents of organic and inorganic compounds in aqueous phases. In addition, first-principles calculations were carried out in order to elucidate the mechanism of Cd(2+) adsorption on CNx.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...