Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol Methods ; 329: 114989, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38917942

RESUMO

Infectious bronchitis virus (IBV), an avian coronavirus, can be isolated and cultured in tracheal organ cultures (TOCs), embryonated eggs and cell cultures, the first two of which are commonly used for viral isolation. Previous studies have suggested that foetal bovine serum (FBS) can inhibit coronavirus replication in cell cultures. In this study, the replication of IBV in chicken embryo kidney (CEK) cell cultures and the Leghorn hepatocellular carcinoma (LMH) cell line was assessed using two different cell culture media containing FBS or yeast extract (YE) and two different IBV strains. The highest concentrations of viral genomes were observed when the cell culture medium (CEK) contained YE. Similar results were observed in LMH cells. Examination of the infectivity by titration demonstrated that the cell lysate from CEK cell cultures in a medium including YE contained a higher median embryo infectious dose than that from CEK cell cultures in a medium containing FBS. These results indicate that improved replication of IBV in cell cultures can be achieved by replacing FBS with YE in the cell culture medium.

2.
Infect Genet Evol ; 115: 105517, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37879385

RESUMO

BACKGROUND: Equid gammaherpesvirus 5 (EHV5) is closely related to equid gammaherpesvirus 2 (EHV2). Detection of EHV5 is frequent in horse populations worldwide, but it is often without a clear and significant clinical impact. Infection in horses can often present as subclinical disease; however, it has been associated with respiratory disease, including equine multinodular pulmonary fibrosis (EMPF). Genetic heterogeneity within small regions of the EHV5 glycoprotein B (gB) sequences have been reported and multiple genotypes of this virus have been identified within individual horses, but full genome sequence data for these viruses is limited. The primary focus of this study was to assess the genomic diversity and natural recombination among EHV5 isolates. RESULTS: The genome size of EHV5 prototype strain and the five EHV5 isolates cultured for this study, including four isolates from the same horse, ranged from 181,929 to 183,428 base pairs (bp), with the sizes of terminal repeat regions varying from 0 to 10 bp. The nucleotide sequence identity between the six EHV5 genomes ranged from 95.5 to 99.1%, and the estimated average nucleotide diversity between isolates was 1%. Individual genes displayed varying levels of nucleotide diversity that ranged from 0 to 19%. The analysis of nonsynonymous substitution (Ka > 0.025) revealed high diversity in eight genes. Genome analysis using RDP4 and SplitsTree programs detected evidence of past recombination events between EHV5 isolates. CONCLUSION: Genomic diversity and recombination hotspots were identified among EHV5 strains. Recombination can drive genetic diversity, particularly in viruses that have a low rate of nucleotide substitutions. Therefore, the results from this study suggest that recombination is an important contributing factor to EHV5 genomic diversity. The findings from this study provide additional insights into the genetic heterogeneity of the EHV5 genome.


Assuntos
Infecções por Herpesviridae , Doenças dos Cavalos , Cavalos , Animais , Infecções por Herpesviridae/veterinária , Genômica , Nucleotídeos , Recombinação Genética , Filogenia
3.
BMC Genomics ; 23(1): 622, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042397

RESUMO

BACKGROUND: Equid gammaherpesvirus 2 (EHV2) is a gammaherpesvirus with a widespread distribution in horse populations globally. Although its pathogenic significance can be unclear in most cases of infection, EHV2 infection can cause upper respiratory tract disease in foals. Co-infection of different strains of EHV2 in an individual horse is common. Small regions of the EHV2 genome have shown considerable genetic heterogeneity. This could suggest genomic recombination between different strains of EHV2, similar to the extensive recombination networks that have been demonstrated for some alphaherpesviruses. This study examined natural recombination and genome diversity of EHV2 field isolates. RESULTS: Whole genome sequencing analysis of 18 EHV2 isolates, along with analysis of two publicly available EHV2 genomes, revealed variation in genomes sizes (from 173.7 to 184.8 kbp), guanine plus cytosine content (from 56.7 to 57.8%) and the size of the terminal repeat regions (from 17,196 to 17,551 bp). The nucleotide sequence identity between the genomes ranged from 86.2 to 99.7%. The estimated average inter-strain nucleotide diversity between the 20 EHV2 genomes was 2.9%. Individual gene sequences showed varying levels of nucleotide diversity and ranged between 0 and 38.1%. The ratio of nonsynonymous substitutions, Ka, to synonymous substitutions, Ks, (Ka/Ks) suggests that over 50% of EHV2 genes are undergoing diversifying selection. Recombination analyses of the 20 EHV2 genome sequences using the recombination detection program (RDP4) and SplitsTree revealed evidence of viral recombination. CONCLUSIONS: Analysis of the 18 new EHV2 genomes alongside the 2 previously sequenced genomes revealed a high degree of genetic diversity and extensive recombination networks. Herpesvirus genome diversification and virus evolution can be driven by recombination, and our findings are consistent with recombination being a key mechanism by which EHV2 genomes may vary and evolve.


Assuntos
Genoma Viral , Genômica , Animais , Variação Genética , Cavalos , Nucleotídeos , Filogenia , Recombinação Genética , Análise de Sequência
4.
Vaccine ; 38(47): 7508-7516, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33012604

RESUMO

Infectious laryngotracheitis virus (ILTV, Gallid alphaherpesvirus 1) causes severe respiratory disease in chickens and has a major impact on the poultry industry worldwide. Live attenuated vaccines are widely available and are administered early in the life of commercial birds, often followed by one or more rounds of revaccination, generating conditions that can favour recombination between vaccines. Better understanding of the factors that contribute to the generation of recombinant ILTVs will inform the safer use of live attenuated herpesvirus vaccines. This study aimed to examine the parameters of infection that allow superinfection and may enable the generation of recombinant progeny in the natural host. In this study, 120 specific-pathogen free (SPF) chickens in 8 groups were inoculated with two genetically distinct live-attenuated ILTV vaccine strains with 1-4 days interval between the first and second vaccinations. After inoculation, viral genomes were detected in tracheal swabs in all groups, with lowest copies detected in swabs collected from the groups where the interval between inoculations was 4 days. Superinfection of the host was defined as the detection of the virus that was inoculated last, and this was detected in tracheal swabs from all groups. Virus could be isolated from swabs at a limited number of timepoints, and these further illustrated superinfection of the birds as recombinant viruses were detected among the progeny. This study has demonstrated superinfection at host level and shows recombination events occur under a very broad range of infection conditions. The occurrence of superinfection after unsynchronised infection with multiple viruses, and subsequent genomic recombination, highlight the importance of using only one type of vaccine per flock as the most effective way to limit recombination.


Assuntos
Infecções por Herpesviridae , Herpesvirus Galináceo 1 , Doenças das Aves Domésticas , Superinfecção , Vacinas Virais , Animais , Galinhas , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/genética , Doenças das Aves Domésticas/prevenção & controle , Recombinação Genética , Vacinas Atenuadas , Vacinas Virais/genética
5.
PLoS One ; 15(8): e0237091, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32750064

RESUMO

Wobbly possum disease virus (WPDV) is an arterivirus that was originally identified in common brushtail possums (Trichosurus vulpecula) in New Zealand, where it causes severe neurological disease. In this study, serum samples (n = 188) from Australian common brushtail, mountain brushtail (Trichosurus cunninghami) and common ringtail (Pseudocheirus peregrinus) possums were tested for antibodies to WPDV using ELISA. Antibodies to WPDV were detected in possums from all three species that were sampled in the states of Victoria and South Australia. Overall, 16% (30/188; 95% CI 11.0-22.0) of possums were seropositive for WPDV and 11.7% (22/188; 95% CI 7.5-17.2) were equivocal. The frequency of WPDV antibody detection was the highest in possums from the two brushtail species. This is the first reported serological evidence of infection with WPDV, or an antigenically similar virus, in Australian possums, and the first study to find antibodies in species other than common brushtail possums. Attempts to detect viral RNA in spleens by PCR were unsuccessful. Further research is needed to characterise the virus in Australian possums and to determine its impact on the ecology of Australian marsupials.


Assuntos
Infecções por Arterivirus/epidemiologia , Arterivirus/patogenicidade , Trichosurus/virologia , Animais , Anticorpos Antivirais/sangue , Arterivirus/imunologia , Infecções por Arterivirus/sangue , Infecções por Arterivirus/virologia , Austrália , Testes Sorológicos , Trichosurus/imunologia
6.
Avian Pathol ; 49(4): 369-379, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32352307

RESUMO

Latency is an important feature of infectious laryngotracheitis virus (ILTV) yet is poorly understood. This study aimed to compare latency characteristics of vaccine (SA2) and field (CL9) strains of ILTV, establish an in vitro reactivation system and examine ILTV infection in peripheral blood mononuclear cells (PBMC) in specific pathogen-free chickens. Birds were inoculated with SA2 or CL9 ILTV and then bled and culled at 21 or 35 days post-inoculation (dpi). Swabs (conjunctiva, palatine cleft, trachea) and trigeminal ganglia (TG) were examined for ILTV DNA using PCR. Half of the TG, trachea and PBMC were co-cultivated with cell monolayers to assess in vitro reactivation of ILTV infection. ILTV DNA was detected in the trachea of approximately 50% of ILTV-inoculated birds at both timepoints. At 21 dpi, ILTV was detected in the TG only in 29% and 17% of CL9- and SA2-infected birds, respectively. At 35 dpi, ILTV was detected in the TG only in 30% and 10% of CL9- and SA2-infected birds, respectively. Tracheal organ co-cultures from 30% and 70% of CL9- and SA2-infected birds, respectively, were negative for ILTV DNA at cull but yielded quantifiable DNA within 6 days post-explant (dpe). TG co-cultivation from 30% and 40% of CL9-and SA2-infected birds, respectively, had detectable ILTV DNA within 6 dpe. Latency characteristics did not substantially vary based on the strain of virus inoculated or between sampling timepoints. These results advance our understanding of ILTV latency and reactivation. RESEARCH HIGHLIGHTS Following inoculation, latent ILTV infection was detected in a large proportion of chickens, irrespective of whether a field or vaccine strain was inoculated. In vitro reactivation of latent ILTV was readily detected in tracheal and trigeminal ganglia co-cultures using PCR. ILTV latency observed in SPF chickens at 21 days post-infection was not substantially different to 35 days post-infection.


Assuntos
Galinhas/virologia , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/imunologia , Doenças das Aves Domésticas/virologia , Animais , Infecções por Herpesviridae/virologia , Herpesvirus Galináceo 1/fisiologia , Leucócitos Mononucleares/imunologia , Masculino , Reação em Cadeia da Polimerase/veterinária , Organismos Livres de Patógenos Específicos , Traqueia/virologia , Gânglio Trigeminal/virologia , Latência Viral
7.
Vet Microbiol ; 243: 108635, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32273014

RESUMO

Infectious laryngotracheitis virus (ILTV) is an economically significant respiratory pathogen of poultry. Novel recombinant strains of ILTV have emerged in Australia during the last decade and currently class 9 (CL9) and class 10 (CL10) ILTV are the most prevalent circulating strains. This study conducted a comprehensive investigation of the pathogenesis of these two viral strains. Commercial broiler and specific pathogen free (SPF) chickens were inoculated with varying doses of CL9 or CL10 ILTV and subsequently evaluated for clinical and pathological signs of infection. While no difference in the levels of acute viral replication were observed across the different challenge doses, the severity of clinical signs, tracheal pathology and mortality were dose dependent. Both strains of virus persisted in the respiratory tract for up to 14 days post inoculation (dpi) and could be detected in the lung and feathers with sporadic detection in the liver, spleen or bursa. Given the prevalence of CL9 and CL10 in Australian poultry flocks, this study provides an important foundation for the development of diagnostic and therapeutic approaches for the detection and prevention of ILTV.


Assuntos
Galinhas/virologia , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/patogenicidade , Doenças das Aves Domésticas/virologia , Tropismo Viral , Animais , Austrália , Plumas/virologia , Genótipo , Herpesvirus Galináceo 1/genética , Pulmão/virologia , Vírus Reordenados/patogenicidade , Organismos Livres de Patógenos Específicos , Replicação Viral
8.
J Virol Methods ; 277: 113797, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31821819

RESUMO

Infectious laryngotracheitis virus (ILTV) causes severe respiratory disease in chickens. ILTV can establish latency and reactivate later in life, but there have been few investigations of ILTV latency. This study aimed to contribute to the methodologies available to detect latent ILTV. A nested PCR was developed which was more sensitive than three other molecular methods investigated in this study. This nested PCR was then used in conjunction with in vitro reactivation culture methods that were optimized and applied to trigeminal ganglia (TG) and tracheal samples from ILTV-vaccinated commercial layer birds (n = 30). ILTV DNA was detected by nested PCR in the upper respiratory tract (URT) or eye of 22 birds. Of the remaining 8 birds, ILTV could be detected by co-culture in TG of 5 birds, with reactivated virus mostly detected 6 days post-explant (dpe). ILTV was also detected in tracheal cultures by 6 dpe. In the ILTV-positive URT samples, the virus could be characterised as vaccine strains SA2 (n = 9) or A20 (n = 5). This study provides evidence for reactivation and shedding of vaccine ILTV in commercial layer birds. Moreover, this study produced a molecular and in-vitro culture method to detect latent viral infection.


Assuntos
Técnicas de Cultura de Células/métodos , Infecções por Herpesviridae/diagnóstico , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/isolamento & purificação , Infecção Latente/diagnóstico , Infecção Latente/veterinária , Animais , Galinhas/virologia , Herpesvirus Galináceo 1/genética , Herpesvirus Galináceo 1/crescimento & desenvolvimento , Infecção Latente/virologia , Limite de Detecção , Reação em Cadeia da Polimerase , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/virologia , Traqueia/virologia , Proteínas Virais/genética , Vacinas Virais/análise
9.
PLoS One ; 14(3): e0213866, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30921344

RESUMO

Infectious laryngotracheitis (ILT) is a respiratory disease that affects chickens. It is caused by the alphaherpesvirus, infectious laryngotracheitis virus (ILTV). This virus undergoes lytic replication in the epithelial cells of the trachea and upper respiratory tract (URT) and establishes latent infection in the trigeminal ganglia (TG) and trachea. Live attenuated vaccines are widely used to control ILT. At least one of these vaccines can establish latent infections in chickens, but this has not been demonstrated for all vaccines. The aim of the current study was to determine the capacity of three commercially available vaccines (SA2, A20 and Serva) and a glycoprotein G deletion mutant vaccine candidate (ΔgG ILTV) to establish latent infection in the TG of specific pathogen free (SPF) chickens. Five groups of 7-day-old SPF chickens were eye-drop vaccinated with either one of the vaccine strains or mock-vaccinated with sterile media and followed until 20 or 21 days post-vaccination (dpv). ILTV DNA was detected at 20-21 dpv in the TG of 23/40 (57.5%) vaccinated SPF chickens (SA2 = 10/10; A20 = 6/10; Serva = 3/10; ΔgG = 4/10) by PCR, but virus could not be reactivated from TG co-cultivated with primary chicken embryo kidney cells. In the birds from which ILTV DNA was detected in the TG, ILTV DNA could not be detected in the URT or trachea of 3 birds in each of the SA2, A20 and Serva vaccinated groups, and in 4 birds in the ΔgG vaccinated group, indicating that these birds were latently infected in the absence of active lytic replication and virus shedding. Results from this study demonstrate the capacity of commercial ILTV vaccines to establish latent infections and underline their importance in the epidemiology of this disease.


Assuntos
Infecções por Herpesviridae/prevenção & controle , Herpesvirus Galináceo 1/imunologia , Doenças das Aves Domésticas/prevenção & controle , Gânglio Trigeminal/virologia , Vacinas Atenuadas/imunologia , Animais , Galinhas , DNA Viral/análise , Infecções por Herpesviridae/virologia , Herpesvirus Galináceo 1/genética , Soluções Oftálmicas/química , Reação em Cadeia da Polimerase , Doenças das Aves Domésticas/virologia , Sistema Respiratório/virologia , Organismos Livres de Patógenos Específicos , Traqueia/virologia , Gânglio Trigeminal/citologia , Vacinação/métodos , Vacinas Virais/imunologia
10.
PLoS One ; 13(12): e0207611, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30521554

RESUMO

Infectious laryngotracheitis (ILT) is an upper respiratory tract disease of chickens that is caused by infectious laryngotracheitis virus (ILTV), an alphaherpesvirus. This disease causes significant economic loses in poultry industries worldwide. Despite widespread use of commercial live attenuated vaccines, many poultry industries continue to experience outbreaks of disease caused by ILTV. Efforts to improve the control of this disease have resulted in the generation of new vaccine candidates, including ILTV mutants deficient in virulence factors. A glycoprotein G deletion mutant vaccine strain of ILTV (ΔgG ILTV), recently licenced as Vaxsafe ILT (Bioproperties Pty Ltd), has been extensively characterised in vitro and in vivo, but the minimum effective dose required to protect inoculated animals has not been determined. This study performed a vaccination and challenge experiment to determine the minimum dose of ΔgG ILTV that, when delivered by eye-drop to seven-day-old specific pathogen-free chickens, would protect the birds from a robust challenge with a virulent field strain of virus (class 9 ILTV). A dose of 10(3.8) plaque forming units was the lowest dose capable of providing a high level of protection against challenge, as measured by clinical signs of disease, tracheal pathology and virus replication after challenge. This study has shown that the ΔgG ILTV vaccine strain is capable of inducing a high level of protection against a virulent field virus at a commercially feasible dose. These results lay the foundations upon which a commercial vaccine can be developed, thereby offering the potential to provide producers with another important tool to help control ILTV.


Assuntos
Herpesvirus Galináceo 1/patogenicidade , Vacinação/métodos , Vacinas Atenuadas/farmacologia , Vacinas Atenuadas/farmacocinética , Animais , Galinhas/imunologia , Glicoproteínas/farmacologia , Soluções Oftálmicas/administração & dosagem , Doenças das Aves Domésticas/prevenção & controle , Vacinas/administração & dosagem , Proteínas do Envelope Viral/imunologia , Vacinas Virais/farmacocinética , Vacinas Virais/farmacologia , Fatores de Virulência , Replicação Viral
11.
Sci Rep ; 8(1): 16408, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401798

RESUMO

Severe equine asthma is a chronic inflammatory condition of the lower airways similar to adult-onset asthma in humans. Exacerbations are characterized by bronchial and bronchiolar neutrophilic inflammation, mucus hypersecretion and airway constriction. In this study we analyzed the gene expression response of the bronchial epithelium within groups of asthmatic and non-asthmatic animals following exposure to a dusty hay challenge. After challenge we identified 2341 and 120 differentially expressed genes in asthmatic and non-asthmatic horses, respectively. Gene set enrichment analysis of changes in gene expression after challenge identified 587 and 171 significantly enriched gene sets in asthmatic and non-asthmatic horses, respectively. Gene sets in asthmatic animals pertained, but were not limited, to cell cycle, neutrophil migration and chemotaxis, wound healing, hemostasis, coagulation, regulation of body fluid levels, and the hedgehog pathway. Furthermore, transcription factor target enrichment analysis in the asthmatic group showed that transcription factor motifs with the highest enrichment scores for up-regulated genes belonged to the E2F transcription factor family. It is postulated that engagement of hedgehog and E2F pathways in asthmatic horses promotes dysregulated cell proliferation and abnormal epithelial repair. These fundamental lesions may prevent re-establishment of homeostasis and perpetuate inflammation.


Assuntos
Asma/genética , Asma/patologia , Brônquios/patologia , Ciclo Celular/genética , Mucosa Respiratória/metabolismo , Animais , Movimento Celular/genética , Perfilação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Homeostase/genética , Cavalos , Neutrófilos/citologia , Análise de Sequência de RNA
12.
Vaccine ; 36(38): 5709-5716, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30104116

RESUMO

Recombination is closely linked with virus replication and is an important mechanism that contributes to genome diversification and evolution in alphaherpesviruses. Infectious laryngotracheitis (ILTV; Gallid alphaherpesvirus 1) is an alphaherpesvirus that causes respiratory disease in poultry. In the past, natural (field) recombination events between different strains of ILTV generated virulent recombinant viruses that have caused severe disease and economic loss in poultry industries. In this study, chickens were vaccinated with attenuated ILTV vaccines to examine the effect of vaccination on viral recombination and diversity following subsequent co-inoculation with two field strains of ILTV. Two of the vaccines (SA2 and A20) prevented ILTV replication in the trachea after challenge, but the level of viral replication after co-infection in birds that received the Serva ILTV vaccine strain did not differ from that of the mock-vaccinated (control) birds. Even though the levels of viral replication were similar in the two groups, the number of recombinant progeny viruses and the level of viral diversity were significantly lower in the Serva-vaccinated birds than in mock-vaccinated birds. In both the mock-vaccinated and Serva-vaccinated groups, a high proportion of recombinant viruses were detected in naïve in-contact chickens that were housed with the co-inoculated birds. Our results indicate that vaccination can limit the number and diversity of recombinant progeny viruses in a manner that is independent of the level of virus replication. It is possible that immune responses induced by vaccination can select for virus genotypes that replicate well under the pressure of the host immune response.


Assuntos
Galinhas/virologia , Variação Genética/genética , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/genética , Doenças das Aves Domésticas/prevenção & controle , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Animais , Galinhas/imunologia , Genótipo , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/prevenção & controle , Herpesvirus Galináceo 1/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Recombinação Genética/genética , Vacinação/veterinária , Replicação Viral/genética
13.
Appl Environ Microbiol ; 83(23)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939604

RESUMO

Recombination is a feature of many alphaherpesviruses that infect people and animals. Infectious laryngotracheitis virus (ILTV; Gallid alphaherpesvirus 1) causes respiratory disease in chickens, resulting in significant production losses in poultry industries worldwide. Natural (field) ILTV recombination is widespread, particularly recombination between attenuated ILTV vaccine strains to create virulent viruses. These virulent recombinants have had a major impact on animal health. Recently, the development of a single nucleotide polymorphism (SNP) genotyping assay for ILTV has helped to understand ILTV recombination in laboratory settings. In this study, we applied this SNP genotyping assay to further examine ILTV recombination in the natural host. Following coinoculation of specific-pathogen-free chickens, we examined the resultant progeny for evidence of viral recombination and characterized the diversity of the recombinants over time. The results showed that ILTV replication and recombination are closely related and that the recombinant viral progeny are most diverse 4 days after coinoculation, which is the peak of viral replication. Further, the locations of recombination breakpoints in a selection of the recombinant progeny, and in field isolates of ILTV from different geographical regions, were examined following full-genome sequencing and used to identify recombination hot spots in the ILTV genome.IMPORTANCE Alphaherpesviruses are common causes of disease in people and animals. Recombination enables genome diversification in many different species of alphaherpesviruses, which can lead to the evolution of higher levels of viral virulence. Using the alphaherpesvirus infectious laryngotracheitis virus (ILTV), we performed coinfections in the natural host (chickens) to demonstrate high levels of virus recombination. Higher levels of diversity in the recombinant progeny coincided with the highest levels of virus replication. In the recombinant progeny, and in field isolates, recombination occurred at greater frequency in recombination hot spot regions of the virus genome. Our results suggest that control measures that aim to limit viral replication could offer the potential to limit virus recombination and thus the evolution of virulence. The development and use of vaccines that are focused on limiting virus replication, rather than vaccines that are focused more on limiting clinical disease, may be indicated in order to better control disease.


Assuntos
Coinfecção/veterinária , Variação Genética , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/genética , Doenças das Aves Domésticas/virologia , Recombinação Genética , Replicação Viral , Animais , Galinhas , Coinfecção/virologia , Genoma Viral , Genótipo , Infecções por Herpesviridae/virologia , Herpesvirus Galináceo 1/classificação , Herpesvirus Galináceo 1/isolamento & purificação , Herpesvirus Galináceo 1/fisiologia
14.
BMC Genomics ; 18(1): 708, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28886691

RESUMO

BACKGROUND: Severe equine asthma is a naturally occurring lung inflammatory disease of mature animals characterized by neutrophilic inflammation, bronchoconstriction, mucus hypersecretion and airway remodeling. Exacerbations are triggered by inhalation of dust and microbial components. Affected animals eventually are unable of aerobic performance. In this study transcriptomic differences between asthmatic and non-asthmatic animals in the response of the bronchial epithelium to an inhaled challenge were determined. RESULTS: Paired endobronchial biopsies were obtained pre- and post-challenge from asthmatic and non-asthmatic animals. The transcriptome, determined by RNA-seq and analyzed with edgeR, contained 111 genes differentially expressed (DE) after challenge between horses with and without asthma, and 81 of these were upregulated. Genes involved in neutrophil migration and activation were in central location in interaction networks, and related gene ontology terms were significantly overrepresented. Relative abundance of specific gene products as determined by immunohistochemistry was correlated with differential gene expression. Gene sets involved in neutrophil chemotaxis, immune and inflammatory response, secretion, blood coagulation and apoptosis were overrepresented among up-regulated genes, while the rhythmic process gene set was overrepresented among down-regulated genes. MMP1, IL8, TLR4 and MMP9 appeared to be the most important proteins in connecting the STRING protein network of DE genes. CONCLUSIONS: Several differentially expressed genes and networks in horses with asthma also contribute to human asthma, highlighting similarities between severe human adult and equine asthma. Neutrophil activation by the bronchial epithelium is suggested as the trigger of the inflammatory cascade in equine asthma, followed by epithelial injury and impaired repair and differentiation. Circadian rhythm dysregulation and the sonic Hedgehog pathway were identified as potential novel contributory factors in equine asthma.


Assuntos
Asma/genética , Brônquios/metabolismo , Perfilação da Expressão Gênica , Mucosa Respiratória/metabolismo , Animais , Ontologia Genética , Cavalos , Inflamação/genética
15.
PLoS One ; 12(3): e0174590, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28350819

RESUMO

To date, recombination between different strains of the avian alphaherpesvirus infectious laryngotracheitis virus (ILTV) has only been detected in field samples using full genome sequencing and sequence analysis. These previous studies have revealed that natural recombination is widespread in ILTV and have demonstrated that recombination between two attenuated ILTV vaccine strains generated highly virulent viruses that produced widespread disease within poultry flocks in Australia. In order to better understand ILTV recombination, this study developed a TaqMan single nucleotide polymorphism (SNP) genotyping assay to detect recombination between two field strains of ILTV (CSW-1 and V1-99 ILTV) under experimental conditions. Following in vivo co-inoculation of these two ILTV strains in specific pathogen free (SPF) chickens, recovered viruses were plaque purified and subjected to the SNP genotyping assay. This assay revealed ILTV recombinants in all co-inoculated chickens. In total 64/87 (74%) of the recovered viruses were recombinants and 23 different recombination patterns were detected, with some of them occurring more frequently than others. The results from this study demonstrate that the TaqMan SNP genotyping assay is a useful tool to study recombination in ILTV and also show that recombination occurs frequently during experimental co-infection with ILTV in SPF chickens. This tool, when used to assess ILTV recombination in the natural host, has the potential to greatly contribute to our understanding of alphaherpesvirus recombination.


Assuntos
Técnicas de Genotipagem/métodos , Infecções por Herpesviridae/virologia , Herpesvirus Galináceo 1/genética , Polimorfismo de Nucleotídeo Único , Doenças das Aves Domésticas/virologia , Animais , Austrália , Sequência de Bases , Linhagem Celular Tumoral , Galinhas , Genoma Viral/genética , Genótipo , Herpesvirus Galináceo 1/classificação , Herpesvirus Galináceo 1/crescimento & desenvolvimento , Masculino , Recombinação Genética , Especificidade da Espécie , Organismos Livres de Patógenos Específicos , Proteínas Virais/genética
16.
Vet Clin North Am Equine Pract ; 31(1): 91-104, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25648568

RESUMO

Many viral agents have been associated with respiratory disease of the horse. The most important viral causes of respiratory disease in horses are equine influenza and the equine alphaherpesviruses. Agents such as equine viral arteritis virus, African horse sickness virus, and Hendra virus establish systemic infections. Clinical signs of disease resulting from infection with these agents can manifest as respiratory disease, but the respiratory tract is not the major body system affected by these viruses. Treatment of viral respiratory disease is generally limited to supportive therapies, whereas targeted antimicrobial therapy is effective in cases of bacterial infection.


Assuntos
Doenças dos Cavalos/virologia , Infecções Respiratórias/veterinária , Viroses/veterinária , Animais , Cavalos , Infecções Respiratórias/virologia , Viroses/virologia
17.
Am J Vet Res ; 75(2): 169-78, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24471753

RESUMO

OBJECTIVE: To develop a method for experimental induction of equine rhinitis A virus (ERAV) infection in equids and to determine the clinical characteristics of such infection. ANIMALS: 8 ponies (age, 8 to 12 months) seronegative for antibodies against ERAV. PROCEDURES-Nebulization was used to administer ERAV (strain ERAV/ON/05; n = 4 ponies) or cell culture medium (control ponies; 4) into airways of ponies; 4 previously ERAV-inoculated ponies were reinoculated 1 year later. Physical examinations and pulmonary function testing were performed at various times for 21 days after ERAV or mock inoculation. Various types of samples were obtained for virus isolation, blood samples were obtained for serologic testing, and clinical scores were determined for various variables. RESULTS: ERAV-inoculated ponies developed respiratory tract disease characterized by pyrexia, nasal discharge, adventitious lung sounds, and enlarged mandibular lymph nodes. Additionally, these animals had purulent mucus in lower airways up to the last evaluation time 21 days after inoculation (detected endoscopically). The virus was isolated from various samples obtained from lower and upper airways of ERAV-inoculated ponies up to 7 days after exposure; this time corresponded with an increase in serum titers of neutralizing antibodies against ERAV. None of the ponies developed clinical signs of disease after reinoculation 1 year later. CONCLUSIONS AND CLINICAL RELEVANCE: Results of this study indicated ERAV induced respiratory tract disease in seronegative ponies. However, ponies with neutralizing antibodies against ERAV did not develop clinical signs of disease when reinoculated with the virus. Therefore, immunization of ponies against ERAV could prevent respiratory tract disease attributable to that virus in such animals.


Assuntos
Aphthovirus , Doenças dos Cavalos/virologia , Infecções por Picornaviridae/veterinária , Doenças Respiratórias/veterinária , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Aphthovirus/imunologia , Temperatura Corporal , Doenças dos Cavalos/imunologia , Doenças dos Cavalos/patologia , Cavalos , Infecções por Picornaviridae/imunologia , Infecções por Picornaviridae/patologia , Infecções por Picornaviridae/virologia , Doenças Respiratórias/imunologia , Doenças Respiratórias/patologia , Doenças Respiratórias/virologia , Testes Sorológicos/veterinária
18.
Vet Res ; 44: 66, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23899161

RESUMO

Enzootic nasal adenocarcinoma (ENA) is a contagious neoplasm of the secretory epithelial cells of the nasal mucosa of sheep and goats. It is associated with the betaretrovirus, enzootic nasal tumor virus (ENTV), but a causative relationship has yet to be demonstrated. In this study, 14-day-old lambs were experimentally infected via nebulization with cell-free tumor filtrates derived from naturally occurring cases of ENA. At 12 weeks post-infection (wpi), one of the five infected lambs developed clinical signs, including continuous nasal discharge and open mouth breathing, and was euthanized. Necropsy revealed the presence of a large bilateral tumor occupying the nasal cavity. At 45 wpi, when the study was terminated, none of the remaining infected sheep showed evidence of tumors either by computed tomography or post-mortem examination. ENTV-1 proviral DNA was detected in the nose, lung, spleen, liver and kidney of the animal with experimentally induced ENA, however there was no evidence of viral protein expression in tissues other than the nose. Density gradient analysis of virus particles purified from the experimentally induced nasal tumor revealed a peak reverse transcriptase (RT) activity at a buoyant density of 1.22 g/mL which was higher than the 1.18 g/mL density of peak RT activity of virus purified from naturally induced ENA. While the 1.22 g/mL fraction contained primarily immature unprocessed virus particles, mature virus particles with a similar morphology to naturally occurring ENA could be identified by electron microscopy. Full-length sequence analysis of the ENTV-1 genome from the experimentally induced tumor revealed very few nucleotide changes relative to the original inoculum with only one conservative amino acid change. Taken together, these results demonstrate that ENTV-1 is associated with transmissible ENA in sheep and that under experimental conditions, lethal tumors are capable of developing in as little as 12 wpi demonstrating the acutely oncogenic nature of this ovine betaretrovirus.


Assuntos
Adenocarcinoma/veterinária , Betaretrovirus/genética , Genoma Viral , Neoplasias Nasais/veterinária , Infecções por Retroviridae/veterinária , Doenças dos Ovinos/transmissão , Infecções Tumorais por Vírus/veterinária , Adenocarcinoma/virologia , Animais , Betaretrovirus/isolamento & purificação , Dados de Sequência Molecular , Neoplasias Nasais/virologia , Filogenia , Infecções por Retroviridae/transmissão , Infecções por Retroviridae/virologia , Análise de Sequência de DNA/veterinária , Ovinos , Doenças dos Ovinos/virologia , Infecções Tumorais por Vírus/transmissão , Infecções Tumorais por Vírus/virologia
19.
Virus Genes ; 46(2): 280-6, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23180486

RESUMO

Equine rhinitis A virus (ERAV) is an ubiquitous virus, routinely identified in equine respiratory infections; however, its role in disease and genetic features are not well defined due to a lack of genomic characterization of the recovered isolates. Therefore, we sequenced the full-length genome of a Canadian ERAV (ERAV/ON/05) and compared it with other ERAV sequences currently available in GenBank. The ERAV/ON/05 genome is 7,839 nucleotides (nts) in length with a variable 5'UTR and a more conserved 3'UTR. When ERAV/ON/05 was compared to other reported ERAV isolates, an insertion of 13 nt in the 5'UTR was identified. Further phylogenetic analysis demonstrated that ERAV/ON/05 is closely related to the ERAV/PERV isolate, which was isolated in 1962 in the United Kingdom. The polyprotein of ERAV/ON/05 had a 96 % nucleotide and amino acid sequence identity to reported ERAVs, and it appears that, despite the high error rate of RNA-dependent RNA polymerase, this isolate has retained high sequence identity to the strain first described by Plummer in 1962.


Assuntos
Aphthovirus/genética , Aphthovirus/isolamento & purificação , Variação Genética , Doenças dos Cavalos/virologia , Infecções por Picornaviridae/veterinária , Animais , Aphthovirus/classificação , Sequência de Bases , Genômica , Cavalos , Dados de Sequência Molecular , Filogenia , Infecções por Picornaviridae/virologia
20.
Can J Vet Res ; 74(4): 271-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21197227

RESUMO

The objective of this project was to develop and implement an active surveillance program for the early and rapid detection of equine influenza viruses in Ontario. For this purpose, from October 2003 to October 2005, nasopharyngeal swabs and acute and convalescent serum samples were collected from 115 client-owned horses in 23 outbreaks of respiratory disease in Ontario. Sera were paired and tested for antibody to equine influenza 1 (AE1-H7N7), equine influenza 2 (AE2-H3N8), equine herpesvirus 1 and 4 (EHV1 and EHV4), and equine rhinitis A and B (ERAV and ERBV). Overall, the cause-specific morbidity rate of equine influenza virus in the respiratory outbreaks was 56.5% as determined by the single radial hemolysis (SRH) test. The AE2-H3N8 was isolated from 15 horses in 5 outbreaks. A 4-fold increase in antibody levels or the presence of a high titer against ERAV or ERBV was observed in 10 out of 13 outbreaks in which AE2-H3N8 was diagnosed as the primary cause of disease. In conclusion, AE2-H3N8 was found to be an important contributor to equine respiratory viral disease. Equine rhinitis A and B (ERAV and ERBV) represented an important component in the equine respiratory disease of performing horses.


Assuntos
Surtos de Doenças/veterinária , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/virologia , Infecções Respiratórias/veterinária , Animais , Anticorpos Antivirais/sangue , Distribuição de Qui-Quadrado , Herpesvirus Equídeo 1/genética , Herpesvirus Equídeo 1/isolamento & purificação , Herpesvirus Equídeo 4/genética , Herpesvirus Equídeo 4/isolamento & purificação , Cavalos , Vírus da Influenza A Subtipo H3N8/genética , Vírus da Influenza A Subtipo H3N8/isolamento & purificação , Vírus da Influenza A Subtipo H7N7/genética , Vírus da Influenza A Subtipo H7N7/isolamento & purificação , Ontário/epidemiologia , Filogenia , RNA Viral/química , RNA Viral/genética , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Rhinovirus/genética , Rhinovirus/isolamento & purificação , Análise de Sequência de DNA , Sorotipagem/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...