Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 166: 115352, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37633054

RESUMO

Drug synergy allows reduced dosing, side effects and tolerance. Optimization of drug synergy chemotherapy is fundamental in acute lymphocytic leukemia and other cancers. This study aimed to analyze the pharmacodynamic synergy between the anti-metabolite cytarabine and WEE1 inhibitor adavosertib on acute leukemia cell lines CCRF-CEM and Jurkat. In both cell lines analysis of concentration-inhibition curves of adavosertib-cytarabine combinations and synergy matrixes supported mutually synergistic drug interactions. Overall mean ( ± SD) synergy scores were higher in Jurkat than CCRF-CEM: Jurkat, ZIP 22.51 ± 1.1, Bliss 22.49 ± 1.1, HSA 23.44 ± 1.0, Loewe 14.16 ± 1.2; and, CCRF-CEM, ZIP 9.17 ± 1.9, Bliss 8.13 ± 2.1, HSA 11.48 ± 1.9 and Loewe 4.99 ± 1.8. Jurkat also surpassed CCRF-CEM in high-degree synergistic adavosertib-cytarabine interactions with mean across-models synergy values of ∼89.1% ± 2.9 for 63 nM cytarabine-97 nM adavosertib (91.4% inhibition synergy barometer). Combination sensitivity scores scatter plots confirmed combination's synergy efficacy. This combined approach permitted identification and prioritization of 63 nM cytarabine-97 nM adavosertib for multiple endpoints analysis. This combination did not affect PBMC viability, while exhibiting Jurkat selective synergy. Immunoblots also revealed Jurkat selective synergistically increased γH2AX phosphorylation, while CDC2 phosphorylation effects were attributed to adavosertib's WEE1 inhibition. In conclusion, the high synergistic efficacy combination of cytarabine (63 nM) and adavosertib (97 nM) was associated with remarkable alterations in metabolites related to the Krebs cycle in Jurkat. The metabolic pathways and processes are related to gluconeogenesis, amino acids, nucleotides, glutathione, electron transport and Warburg effect. All above relate to cell survival, apoptosis, and cancer progression. Our findings could pave the way for novel biomarkers in treatment, diagnosis, and prognosis of leukemia and other cancers.


Assuntos
Citarabina , Leucemia , Humanos , Citarabina/farmacologia , Leucócitos Mononucleares , Leucemia/tratamento farmacológico , Linhagem Celular , Proliferação de Células
2.
J Cell Physiol ; 228(5): 1127-36, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23086758

RESUMO

Prostate cancer is frequently associated with bone metastases, where the crosstalk between tumor cells and key cells of the bone microenvironment (osteoblasts, osteoclasts, immune cells) amplifies tumor growth. We have explored the potential of a novel cytokine, interleukin-27 (IL-27), for inhibiting this malignant crosstalk, and have examined the effect of autocrine IL-27 on prostate cancer cell gene expression, as well as the effect of paracrine IL-27 on gene expression in bone and T cells. In prostate tumor cells, IL-27 upregulated genes related to its signaling pathway while downregulating malignancy-related receptors and cytokine genes involved in gp130 signaling, as well as several protease genes. In both undifferentiated and differentiated osteoblasts, IL-27 modulated upregulation of genes related to its own signaling pathway as well as pro-osteogenic genes. In osteoclasts, IL-27 downregulated several genes typically involved in malignancy and also downregulated osteoclastogenesis-related genes. Furthermore, an osteogenesis-focused real-time PCR array revealed a more extensive profile of pro-osteogenic gene changes in both osteoblasts and osteoclasts. In T-lymphocyte cells, IL-27 upregulated several activation-related genes and also genes related to the IL-27 signaling pathway and downregulated several genes that could modulate osteoclastogenesis. Overall, our results suggest that IL-27 may be able to modify interactions between prostate tumor and bone microenvironment cells and thus could be used as a multifunctional therapeutic for restoring bone homeostasis while treating metastatic prostate tumors.


Assuntos
Comunicação Celular , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Interleucina-17 , Neoplasias da Próstata , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias Ósseas/terapia , Comunicação Celular/genética , Comunicação Celular/imunologia , Humanos , Técnicas In Vitro , Interleucina-17/genética , Interleucina-17/metabolismo , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...