Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 7669, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31092892

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

2.
Sci Rep ; 8(1): 16255, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389950

RESUMO

We herein present a novel and sustainable technology for mercury recycling, with the maximum observed uptake capacity. Facile synthesis of the most efficient (~1.9 gg-1) nano-trap, made of montmorillonite-Fe-iron oxides, was performed to instantaneously remove mercury(II) ions from water. Elemental Hg was recovered from the adduct, by employing Fe granules, at ambient conditions. Varied pHs and elevated temperatures further enhanced this already highly efficient recycling process. The reduction of Hg(II) to Hg(I) by the nano trap and Hg(I) to Hg(0) by Fe granules are the main driving forces behind the recycling process. Facile sustainable recycling of the nano-trap and Fe granules require no additional energy. We have further developed a recyclable model for Hg nano-trap, which is inexpensive (<$5 CAD), and can remove mercury in a few seconds. This technology has multiple applications, including in the communities exposed to mercury contamination.

3.
ACS Omega ; 3(3): 3384-3395, 2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458592

RESUMO

To evaluate the role of atmospheric heterogeneous reactions on the ice nucleation ability of airborne dust particles, we investigated the systematic study of ice nucleation microphysics with a suite of atmospherically relevant metals (10), halides (4), and oxyhalides (2). Within a minute, a kaolin-iron oxide composite (KaFe) showed efficient reactions with aqueous mercury salts. Among the different mercury salts tested, only HgCl2 reacting with KaFe generated HgKaFe, a highly efficient ice nucleating particle (HEIN). When added to water, HgKaFe caused water to freeze at much warmer temperatures, within a narrow range of -6.6 to -4.7 °C. Using a suite of optical spectroscopy, mass spectrometry, and microscopy techniques, we performed various experiments to decipher the physical and chemical properties of surface and bulk. KaFe was identified as a mixture of different iron oxides, namely, goethite, hematite, magnetite, and ε-Fe2O3, with kaolin. In HgKaFe, HgCl2 was reduced to Hg2Cl2 and iron was predominantly in maghemite form. Reduction of Fe2+ by NaBH4, followed by aerial oxidation, helped KaFe to be an exact precursor for the synthesis of HEIN HgKaFe. Kaolin served as a template for synthesizing iron oxide, opposing unwanted aggregation. No other metal or metal halide was found to have more efficient nucleating particles than HgCl2 with KaFe composite. The chelation of Hg(II) hindered the formation of HEIN. This study is useful for investigating the role of morphology and how inorganic chemical reactions on the surface of dust change morphology and thus ice nucleation activity. The understanding of the fundamentals of what makes a particle to be a good ice nucleating particle is valuable to further understand and predict the amount and types of atmospheric ice nucleating particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...