Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutr Res ; 119: 65-75, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37757641

RESUMO

Increases in postprandial lipids are linked to the development of cardiometabolic and fatty liver disease. Prior work has suggested that dairy possesses beneficial cardiometabolic effects and thus the aim of the current investigation was to test the hypotheses that the habitual consumption of dairy, in the form of skim milk powder (SMP), would protect against increases in circulating lipids and liver lipid accumulation following an oral fat challenge in rats. Male rats were fed either a semipurified low-fat control diet with casein or a diet with an equivalent amount of protein (∼13% kcal) provided through skim milk powder (SMP) for 6 weeks (n = 40/group). Rats were then given an oral gavage of palm oil (5 mL/kg body weight) or an equivalent volume of water, and serum and liver were harvested 90 minutes or 4 hours after. Rats fed the SMP diet gained less weight than controls but there were no differences in glucose tolerance between groups. The fat gavage increased serum lipids in both diet groups, whereas there was a main effect of the fat challenge to increase, and the SMP diet, to decrease liver triacylglycerol accumulation. The percentage of saturated and monounsaturated fatty acids and the protein content/activity of lipogenic enzymes were reduced in livers from SMP-fed rats, whereas the percentage of polyunsaturated fatty acids was increased. In summary, we provide evidence that SMP consumption, although not protecting against postprandial lipemia, markedly attenuates triacylglycerol accumulation and the relative amount of saturated and monounsaturated fatty acids in the liver.


Assuntos
Doenças Cardiovasculares , Hiperlipidemias , Ratos , Masculino , Animais , Triglicerídeos , Leite , Lipídeos , Pós , Dieta , Fígado/metabolismo , Hiperlipidemias/etiologia , Ácidos Graxos Monoinsaturados , Doenças Cardiovasculares/metabolismo , Ácidos Graxos/metabolismo , Gorduras na Dieta/metabolismo
2.
J Physiol ; 600(4): 829-845, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34192813

RESUMO

KEY POINTS: Ambient cold exposure is often regarded as a promising anti-obesity treatment in mice. However, most preclinical studies aimed at treating obesity via cold-induced thermogenesis have been confounded by subthermoneutral housing temperatures. Therefore, the ability of ambient cold to combat diet-induced obesity in mice housed under humanized thermoneutral conditions is currently unknown. Moreover, mammals such as mice are rarely exposed to chronic ambient cold without reprieve, yet mice are often subjected to experimental conditions of chronic rather than intermittent cold exposure (ICE), despite ICE being more physiologically relevant. In the present study, we provide novel evidence that thermoneutral housing uncouples the effects of ICE on glucose and energy homeostasis suggesting that ICE, despite improving glucose tolerance, is not an effective obesity treatment when mice are housed under humanized thermoneutral conditions. ABSTRACT: The present study examines whether a physiologically relevant model of ambient cold exposure, intermittent cold exposure (ICE), could ameliorate the metabolic impairments of diet-induced obesity in male and female mice housed under humanized thermoneutral conditions. Male and female C57BL/6J mice housed at thermoneutrality (29°C) were fed a low-fat diet or high-fat diet for 6 weeks before being weight matched into groups that remained unperturbed or underwent ICE for 4 weeks (4°C for 60 min day-1 ; 5 days week-1 ) when being maintained on their respective diets. ICE induced rapid and persistent hyperphagia exacerbating rather than attenuating high-fat diet-induced obesity over time. These ICE-induced increases in adiposity were found to be energy intake-dependent via pair-feeding. Despite exacerbating high-fat diet-induced obesity, ICE improved glucose tolerance, independent of diet, in a sex-specific manner. The effects of ICE on glucose tolerance were not attributed to improvements in whole-body insulin tolerance, tissue specific insulin action, nor differences in markers of hepatic insulin clearance or pancreatic beta cell proliferation. Instead, ICE increased serum concentrations of insulin and C-peptide in response to glucose, suggesting that ICE may improve glucose tolerance by potentiating pancreatic glucose-stimulated insulin secretion. These data suggest that ICE, despite improving glucose tolerance, is not an effective obesity treatment in mice housed under humanized conditions.


Assuntos
Tecido Adiposo Marrom , Habitação , Tecido Adiposo Marrom/fisiologia , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Feminino , Glucose/metabolismo , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo
3.
J Appl Physiol (1985) ; 132(2): 413-422, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34913737

RESUMO

Growth differentiating factor-15 (GDF15) is expressed, and secreted, from a wide range of tissues and serves as a marker of cellular stress. A key transcriptional regulator of this hormone is the endoplasmic reticulum stress protein, CHOP (C/EBP homologous protein). Exercise increases GDF15 levels but the underlying mechanisms of this are not known. To test whether CHOP regulates GDF15 during exercise, we used various models of altered ER stress. We examined the effects of acute exercise on circulating GDF15 and Gdf15 mRNA expression in liver, triceps skeletal muscle, and epididymal white adipose tissue and examined the GDF15 response to acute exercise in lean and high-fat diet-induced obese mice, sedentary and exercise trained mice, and CHOP-deficient mice. We found that obesity augments exercise-induced circulating GDF15 although ER stress markers were similar in lean and obese mice. Exercise-induced GDF15 was increased in trained and sedentary mice that ran at the same relative exercise intensity, despite trained mice being protected against increased markers of ER stress. Finally, exercise-induced increases in GDF15 at the tissue and whole body level were intact in CHOP-deficient mice. Together, these results provide evidence that exercise-induced GDF15 expression and secretion occurs independent of ER stress/CHOP.NEW & NOTEWORTHY GDF15 is expressed in a wide range of tissues, is a marker of cellular stress, and has been shown to be regulated by the ER stress protein CHOP. Although exercise increases GDF15, the mechanisms mediating this effect have not been elucidated. Using various models of altered ER stress, we demonstrate that exercise-induced increases in GDF15 occur independent of ER stress/CHOP.


Assuntos
Estresse do Retículo Endoplasmático , Fígado , Animais , Dieta Hiperlipídica , Camundongos , Camundongos Obesos , Obesidade
4.
Physiol Rep ; 8(3): e14370, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32061187

RESUMO

The liver is the primary metabolic organ involved in the endogenous production of glucose through glycogenolysis and gluconeogenesis. Hepatic glucose production (HGP) is increased via neural-hormonal mechanisms such as increases in catecholamines. To date, the effects of prior exercise training on the hepatic response to epinephrine have not been fully elucidated. To examine the role of epinephrine signaling on indices of HGP in trained mice, male C57BL/6 mice were either subjected to 12 days of voluntary wheel running or remained sedentary. Epinephrine, or vehicle control, was injected intraperitoneally on day 12 prior to sacrifice with blood glucose being measured 15 min postinjection. Epinephrine caused a larger glucose response in sedentary mice and this was paralleled by a greater reduction in liver glycogen in sedentary compared to trained mice. There was a main effect of epinephrine to increase the phosphorylation of protein kinase-A (p-PKA) substrates in the liver, which was driven by increases in the sedentary, but not trained, mice. Similarly, epinephrine-induced increases in the mRNA expression of hepatic adrenergic receptors (Adra1/2a, Adrb1), and glucose-6-phosphatase (G6pc) were greater in sedentary compared to trained mice. The mRNA expression of cAMP-degrading enzymes phosphodiesterase 3B and 4B (Pde3b, Pde4b) was greater in trained compared to sedentary mice. Taken together, our data suggest that prior exercise training reduces the liver's response to epinephrine. This could be beneficial in the context of training-induced glycogen sparing during exercise.


Assuntos
Agonistas Adrenérgicos/farmacologia , Epinefrina/farmacologia , Fígado/metabolismo , Esforço Físico , Agonistas Adrenérgicos/administração & dosagem , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Epinefrina/administração & dosagem , Gluconeogênese , Glucose-6-Fosfato/metabolismo , Glicogênio/metabolismo , Injeções Intravenosas , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Diester Fosfórico Hidrolases/metabolismo , Receptores Adrenérgicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...