Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843538

RESUMO

Controlling the two-dimensional polymerization processes of two-dimensional covalent organic frameworks (2D COFs) is essential to fully realizing their distinct properties. Although most 2D COFs have been isolated as polycrystalline aggregates with only nanometer-scale crystalline domains, we have identified rapid, solvothermal conditions that provide micrometer-scale and larger single-crystal 2D polymers for a few 2D COFs. Yet it remains unclear why certain conditions produce far larger 2D polymers than others, which hinders generalizing these findings. The guiding principles for controlled two-dimensional polymerization in solution remain unclear. Here, we study the crystallization processes of both single-crystalline and polycrystalline 2D COFs using ultrasmall-angle X-ray scattering (USAXS) for the first time, through which we characterized COF formation conditions with scattering data collected every few seconds. In situ USAXS experiments revealed distinct growth mechanisms between single-crystalline and polycrystalline COFs and suggested a nonclassical particle fusion-based growth model for single-crystalline COFs that results in faceted, hexagonal particles. These findings were corroborated by in situ wide-angle X-ray scattering (WAXS) experiments and scanning electron microscopy (SEM). In contrast, polymerizations that provide polycrystalline COFs evolve as spherical aggregates that do not fuse in the same way. These insights into how micrometer-sized, crystalline 2D polymers are formed in solution point a way forward to establishing a robust connection between the 2D polymer structure and designed properties by controlling their polymerization processes.

2.
J Am Chem Soc ; 146(25): 17150-17157, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38870114

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants linked to harmful health effects. Currently employed PFAS destruction methods are energy-intensive and often produce shorter-chain and recalcitrant partially fluorinated byproducts. We report the mineralization of five fluorotelomer compounds via a base-mediated degradation using NaOH and mild temperatures (120 °C) in a mixture of DMSO:H2O (8:1 v/v). The studied fluorotelomers have varying polar head groups-carboxylic acids, sulfonic acids, alcohols, and phosphonic acids, which are the most common polar head groups used in commercial and industrial applications. The degradation intermediates and byproducts were characterized using 1H, 13C, and 19F NMR spectroscopy. Density functional theory computations at the M06-2X/6-311 + G(2d,p)-SMD-(DMSO) level were consistent with the observed intermediates and guided an overall mechanistic hypothesis. Degradation of each fluorotelomer occurs through a similar process, in which the nonfluorinated carbons and the first fluorinated carbon are cleaved from the remaining perfluoroalkyl fragment, which degrades through previously identified pathways. These findings provide important insight into PFAS degradation processes and suggest that PFAS containing at least one C-H bond within or adjacent to its fluoroalkyl chain can be degraded under these mild conditions. Many PFAS in current use as well as recalcitrant fluorinated byproducts generated from other PFAS degradation methods are candidates for this approach.

3.
Water Res ; 260: 121897, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38870863

RESUMO

Perfluoroalkyl acids (PFAAs) are ubiquitous environmental contaminants of global concern, and adsorption processes are the most widely used technologies to remove PFAAs from water. However, there remains little data on the ways that specific water matrix constituents inhibit the adsorption of PFAAs on different adsorbents. In this study, we evaluated the adsorption of 13 PFAAs on two styrene-functionalized ß-cyclodextrin (StyDex) polymers, an activated carbon (AC), and an anion-exchange resin (AER) in the absence and presence of specific water matrix constituents (16 unique water matrices) in batch experiments. All four adsorbents exhibited some extent of adsorption inhibition in the presence of inorganic ions and/or humic acid (HA) added as a surrogate for natural organic matter. Two PFAAs (C5-C6 perfluorocarboxylic acids (PFCAs)) were found to exhibit relatively weak adsorption and five PFAAs (C6-C8 perfluorosulfonic acids (PFSAs) and C9-C10 PFCAs) were found to exhibit relatively strong adsorption on all four adsorbents across all matrices. Adsorption inhibition was the greatest in the presence of Ca2+ (direct site competition) and HA (direct site competition and pore blockage) for AC, NO3- (direct site competition) and Ca2+ (chemical complexation) for the AER, and SO42- (compression of the double layer) for the StyDex polymers. The pattern of adsorption inhibition of both StyDex polymers were similar to each other but different from AC and AER, which demonstrates the distinctive PFAA adsorption mechanism on StyDex polymers. The unique performance of each type of adsorbent confirms unique adsorption mechanisms that result in unique patterns of adsorption inhibition in the presence of matrix constituents. These insights could be used to develop models to predict the performance of these adsorbents in real water matrices and afford rational selection of adsorbents based on water chemistry for specific applications.

4.
ACS Appl Mater Interfaces ; 16(22): 28409-28422, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38768313

RESUMO

Cross-linked ß-cyclodextrin (ß-CD) polymers are promising adsorbents for the removal of per- and polyfluoroalkyl substances (PFAS) from contaminated water sources, including contaminated groundwater, drinking water, and wastewater. We previously reported porous, styrene-functionalized ß-cyclodextrin (StyDex) polymers derived from radical polymerization with vinyl comonomers. Because of the versatility of these polymerizations, StyDex polymer compositions are tunable, which facilitates efforts to establish structure-adsorption relationships and to discover improved materials. Here, we evaluate the material properties and PFAS adsorption of 20 StyDex derivatives with varied comonomer structure and loading, regiochemistry of styrene placement on the CD monomer, and CD size. A StyDex polymer containing N,N'-dimethylbutyl ammonium ions exhibited the most effective PFAS adsorption in batch experiments. Furthermore, a StyDex polymer containing ß-CD exhibited size-selective host-guest interactions with perfluoroalkyl acids (PFAAs) and neutral contaminants in aqueous electrolyte when compared to similar polymers containing either α-CD or γ-CD. Polymers based on ß-CD monomers with an average of seven styrene groups randomly positioned over the 21 available hydroxyl groups performed similarly to those based on a ß-CD monomer functionalized regiospecifically at each of the seven 6' positions. The former ß-CD monomer is prepared in a single step from unmodified ß-CD, so the ability to use it without compromising performance demonstrates promise for developing economically competitive adsorbents. These results offered important insights into structure-adsorption properties of StyDex polymers and will inform the design of improved StyDex formulations.

5.
Chem Sci ; 15(20): 7545-7551, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38784733

RESUMO

The synthesis and scale-up of high quality covalent organic frameworks (COFs) remains a challenge due to slow kinetics of the reversible bond formation and the need for precise control of reaction conditions. Here we report the rapid synthesis of faceted single crystals of two-dimensional (2D) COFs using a continuous flow reaction process. Two imine linked materials were polymerized to the hexagonal CF-TAPB-DMPDA and the rhombic CF-TAPPy-PDA COF, respectively. The reaction conditions were optimized to produce single crystals of micrometer size, which notably formed when the reaction was cooling to room temperature. This indicated a growth mechanism consistent with the fusion of smaller COF particles. The optimized conditions were used to demonstrate the scalability of the continuous approach by synthesizing high quality, faceted COFs at a rate of more than 1 g h-1. The materials showed high crystallinity and porosity with surface areas exceeding 2000 m2 g-1. Additionally, the versatility of the continuous flow reaction approach was demonstrated on a post-synthetic single crystal to single crystal demethylation of CF-TAPB-DMPDA to afford a hydroxyl functionalized COF CF-TAPB-DHPDA. Throughout the modification process, the material maintained its hexagonal morphology, crystallinity, and porosity. This work reports the first example of synthesizing and post-synthetically modifying imine linked COF single crystals in continuous flow and will prove a first step towards scaling high quality COFs to industrial levels.

6.
Adv Mater ; 36(1): e2300525, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37014260

RESUMO

2D covalent organic frameworks (2D COFs) are attractive candidates for next-generation membranes due to their robust linkages and uniform, tunable pores. Many publications have claimed to achieve selective molecular transport through COF pores, but reported performance metrics for similar networks vary dramatically, and in several cases the reported experiments are inadequate to support such conclusions. These issues require a reevaluation of the literature. Published examples of 2D COF membranes for liquid-phase separations can be broadly divided into two categories, each with common performance characteristics: polycrystalline COF films (most >1 µm thick) and weakly crystalline or amorphous films (most <500 nm thick). Neither category has demonstrated consistent relationships between the designed COF pore structure and separation performance, suggesting that these imperfect materials do not sieve molecules through uniform pores. In this perspective, rigorous practices for evaluating COF membrane structures and separation performance are described, which will facilitate their development toward molecularly precise membranes capable of performing previously unrealized chemical separations. In the absence of this more rigorous standard of proof, reports of COF-based membranes should be treated with skepticism. As methods to control 2D polymerization improve, precise 2D polymer membranes may exhibit exquisite and energy efficient performance relevant for contemporary separation challenges.

7.
Environ Sci Technol ; 57(48): 19624-19636, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37934073

RESUMO

Trace organic contaminants (TrOCs) present major removal challenges for wastewater treatment. TrOCs, such as perfluoroalkyl and polyfluoroalkyl substances (PFAS), are associated with chronic toxicity at ng L-1 exposure levels and should be removed from wastewater to enable safe reuse and release of treated effluents. Established adsorbents, such as granular activated carbon (GAC), exhibit variable TrOC removal and fouling by wastewater constituents. These shortcomings motivate the development of selective novel adsorbents that also maintain robust performance in wastewater. Cross-linked ß-cyclodextrin (ß-CD) polymers are promising adsorbents with demonstrated TrOC removal efficacy. Here, we report a simplified and potentially scalable synthesis of a porous polymer composed of styrene-linked ß-CD and cationic ammonium groups. Batch adsorption experiments demonstrate that the polymer is a selective adsorbent exhibiting complete removal for six out of 13 contaminants with less adsorption inhibition than GAC in wastewater. The polymer also exhibits faster adsorption kinetics than GAC and ion exchange (IX) resin, higher adsorption affinity for PFAS than GAC, and is regenerable by solvent wash. Rapid small-scale column tests show that the polymer exhibits later breakthrough times compared to GAC and IX resin. These results demonstrate the potential for ß-CD polymers to remediate TrOCs from complex water matrices.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , beta-Ciclodextrinas , Águas Residuárias , Polímeros , Poluentes Químicos da Água/análise , Carvão Vegetal , Purificação da Água/métodos , Adsorção
8.
J Am Chem Soc ; 145(40): 21798-21806, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37773640

RESUMO

Two-dimensional covalent organic frameworks (2D COFs) form as layered 2D polymers whose sheets stack through high-surface-area, noncovalent interactions that can give rise to different interlayer arrangements. Manipulating the stacking of 2D COFs is crucial since it dictates the effective size and shape of the pores as well as the specific interactions between functional aromatic systems in adjacent layers, both of which will strongly influence the emergent properties of 2D COFs. However, principles for tuning layer stacking are not yet well understood, and many 2D COFs are disordered in the stacking direction. Here, we investigate effects of pendant chain length through a series of 2D imine-linked COFs functionalized with n-alkyloxy chains varying in length from one carbon (C1 COF) to 11 carbons (C11 COF). This series reveals previously unrecognized and unanticipated trends in both the stacking geometry and crystallinity. C1 COF adopts an averaged eclipsed geometry with no apparent offset between layers. In contrast, all subsequent chain lengths lead to some degree of unidirectional slip stacking. As pendant chain length is increased, trends show average layer offset increasing to a maximum of 2.07 Å in C5 COF and then decreasing as chain length is extended through C11 COF. Counterintuitively, shorter chains (C2-C4) give rise to lower yields of weakly crystalline materials, while longer chains (C6-C9) produce greater yields of highly crystalline materials, as confirmed by powder X-ray diffraction and scanning electron microscopy. Molecular dynamics simulations corroborate these observations, suggesting that long alkyl chains can interact favorably to promote the self-assembly of sheets. In situ proton NMR spectroscopy provides insights into the reaction equilibrium as well as the relationship between low COF yields and low crystallinity. These results provide fundamental insights into principles of supramolecular assembly in 2D COFs, demonstrating an opportunity for harnessing favorable side-chain interactions to produce highly crystalline materials.

9.
Adv Mater ; 35(41): e2305387, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37548061

RESUMO

Thermoset polyurethane (PU) foams are widely used in industrial applications, but they cannot be recycled by conventional melt reprocessing because of their cross-linked structures. The introduction of carbamate exchange catalysts converts thermoset PU into covalent adaptable networks (CANs), which are amenable to reprocessing at elevated temperatures. However, this approach has produced solid PU films, which have fewer uses and lower commercial demand. In this work, simultaneous reprocessing and refoaming of thermoset PU foams is demonstrated by leveraging the melt-processability of PU CANs and allowing cell growth by gas generation in a twin-screw extruder. The optimal operating temperature of the refoaming process is determined through chemical, thermal, and structural analysis of PU foam extrudates. The foam-to-foam extrusion process produces controllable, continuous, and uniform foam structures, as characterized by cell diameter and cell number density. Low-density PU foams are obtained through a process simulating injection molding. The compression properties of reprocessed PU foam are compared with as-synthesized PU foam to demonstrate efficacy of the refoaming processes. These results demonstrate that PU foams can be prepared through recycling while maintaining microstructural and chemical integrity. In the future, this strategy may be applied to thermoset PU foams of various chemical compositions and shows promise for scalability.

10.
J Am Chem Soc ; 145(33): 18447-18454, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37552123

RESUMO

Molecular electronic spin qubits have great potential for use in quantum information science applications because their structure can be rationally tuned using synthetic chemistry. Their integration into a new class of materials, ion-paired frameworks, allows for the formation of ordered arrays of these molecular spin qubits. Three ion-paired frameworks with varying densities of paramagnetic Cu(II) porphyrins were isolated as micron-sized crystals suitable for characterization by single-crystal X-ray diffraction. Pulse-electron paramagnetic resonance (EPR) spectroscopy probed the spin coherence of these materials at temperatures up to 140 K. The crystals with the longest Cu-Cu distances had a spin-spin relaxation time (Tm) of 207 ns and a spin-lattice relaxation time (T1) of 1.8 ms at 5 K, which decreased at elevated temperature because of spin-phonon coupling. Crystals with shorter Cu-Cu distances also had lower T1 values because of enhanced cross-relaxation from qubit-qubit dipolar coupling. Frameworks with shorter Cu-Cu distances exhibited lower Tm values because of the increased interactions between qubits within the frameworks. Incorporating molecular electronic spin qubits in ion-paired frameworks enables control of composition, spacing, and interqubit interactions, providing a rational means to extend spin relaxation times.

11.
Adv Mater ; 35(38): e2303673, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37288981

RESUMO

With molecularly well-defined and tailorable 2D structures, covalent organic frameworks (COFs) have emerged as leading material candidates for chemical sensing, storage, separation, and catalysis. In these contexts, the ability to directly and deterministically print COFs into arbitrary geometries will enable rapid optimization and deployment. However, previous attempts to print COFs have been restricted by low spatial resolution and/or post-deposition polymerization that limits the range of compatible COFs. Here, these limitations are overcome with a pre-synthesized, solution-processable colloidal ink that enables aerosol jet printing of COFs with micron-scale resolution. The ink formulation utilizes the low-volatility solvent benzonitrile, which is critical to obtaining homogeneous printed COF film morphologies. This ink formulation is also compatible with other colloidal nanomaterials, thus facilitating the integration of COFs into printable nanocomposite films. As a proof-of-concept, boronate-ester COFs are integrated with carbon nanotubes (CNTs) to form printable COF-CNT nanocomposite films, in which the CNTs enhance charge transport and temperature sensing performance, ultimately resulting in high-sensitivity temperature sensors that show electrical conductivity variation by 4 orders of magnitude between room temperature and 300 °C. Overall, this work establishes a flexible platform for COF additive manufacturing that will accelerate the incorporation of COFs into technologically significant applications.

12.
Chem Commun (Camb) ; 59(41): 6203-6206, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37128983

RESUMO

Interrogating the stacking of two-dimensional polymers (2DPs) as a function of chemical composition is important to leverage their properties. We explore the dependence of 2DP crystallinity and porosity on variable amounts of zwitterions contained within the pores and find that high zwitterion loadings consistently diminish 2DP materials quality. A competition between disruptive zwitterion electrostatic forces and alkyl stabilization directs the stacking order of each 2DP and demonstrates the contrasting effects of side chain composition on 2DP crystallinity and porosity.

13.
J Am Chem Soc ; 145(22): 11969-11977, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37216443

RESUMO

Two-dimensional covalent organic frameworks (2D COFs) containing heterotriangulenes have been theoretically identified as semiconductors with tunable, Dirac-cone-like band structures, which are expected to afford high charge-carrier mobilities ideal for next-generation flexible electronics. However, few bulk syntheses of these materials have been reported, and existing synthetic methods provide limited control of network purity and morphology. Here, we report transimination reactions between benzophenone-imine-protected azatriangulenes (OTPA) and benzodithiophene dialdehydes (BDT), which afforded a new semiconducting COF network, OTPA-BDT. The COFs were prepared as both polycrystalline powders and thin films with controlled crystallite orientation. The azatriangulene nodes are readily oxidized to stable radical cations upon exposure to an appropriate p-type dopant, tris(4-bromophenyl)ammoniumyl hexachloroantimonate, after which the network's crystallinity and orientation are maintained. Oriented, hole-doped OTPA-BDT COF films exhibit electrical conductivities of up to 1.2 × 10-1 S cm-1, which are among the highest reported for imine-linked 2D COFs to date.

14.
ACS Nano ; 17(6): 5306-5315, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36916650

RESUMO

Methylammonium lead iodide (MAPbI3) perovskite nanocrystals (NCs) offer desirable optoelectronic properties with prospective utility in photovoltaics, lasers, and light-emitting diodes (LEDs). Structural rearrangements of MAPbI3 in response to photoexcitation, such as lattice distortions and phase transitions, are of particular interest, as these engender long carrier lifetime and bolster carrier diffusion. Here, we use variable temperature X-ray diffraction (XRD) and synchrotron-based transient X-ray diffraction (TRXRD) to investigate lattice response following ultrafast optical excitation. MAPbI3 NCs are found to slowly undergo a phase transition from the tetragonal to a pseudocubic phase over the course of 1 ns under 0.02-4.18 mJ/cm2 fluence photoexcitation, with apparent nonthermal lattice distortions attributed to polaron formation. Lattice recovery exceeds time scales expected for both carrier recombination and thermal dissipation, indicating meta-stability likely due to the proximal phase transition, with symmetry-breaking along equatorial and axial directions. These findings are relevant for fundamental understanding and applications of structure-function properties.

15.
Psychiatry ; 86(3): 267-270, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-32720862

RESUMO

The width of a human hair sourced from a female elementary school student was measured by light diffraction using red and blue laser pointers. The two laser sources both provided consistent estimates of the hair diameter of approximately 50 µm. The overall experiment and writing process provided a temporary respite from COVID-19 shelter-in-place requirements and deteriorating spring weather that precluded outdoor activities.


Assuntos
COVID-19 , Humanos , Feminino , Criança , Luz , Cabelo
16.
J Am Chem Soc ; 145(1): 689-696, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36574726

RESUMO

Molecular electronic spin qubits are promising candidates for quantum information science applications because they can be reliably produced and engineered via chemical design. Embedding electronic spin qubits within two-dimensional polymers (2DPs) offers the possibility to systematically engineer inter-qubit interactions while maintaining long coherence times, both of which are prerequisites to their technological utility. Here, we introduce electronic spin qubits into a diamagnetic 2DP by n-doping naphthalene diimide subunits with varying amounts of CoCp2 and analyze their spin densities by quantitative electronic paramagnetic resonance spectroscopy. Low spin densities (e.g., 6.0 × 1012 spins mm-3) enable lengthy spin-lattice (T1) and spin-spin relaxation (T2) times across a range of temperatures, ranging from T1 values of 164 ms at 10 K to 30.2 µs at 296 K and T2 values of 2.36 µs at 10 K to 0.49 µs at 296 K for the lowest spin density sample examined. Higher spin densities and temperatures were both found to diminish T1 times, which we attribute to detrimental cross-relaxation from spin-spin dipolar interactions and spin-phonon coupling, respectively. Higher spin densities decreased T2 times and modulated the T2 temperature dependence. We attribute these differences to the competition between hyperfine and dipolar interactions for electron spin decoherence, with the dominant interaction transitioning from the former to the latter as spin density and temperature increase. Overall, this investigation demonstrates that dispersing electronic spin qubits within layered 2DPs enables chemical control of their inter-qubit interactions and spin decoherence times.

17.
J Org Chem ; 87(24): 16307-16312, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36459578

RESUMO

The synthesis of a diol containing a nonalternant aromatic core was investigated to access a nonalternant isomer of bisanthene with functional groups suitable for two-dimensional polymerization. An alternant diol and its nonalternant isomer were prepared in a short synthetic route from the same bifluorenylidene starting material. The bifluorenylidene reactant undergoes a Stone-Wales rearrangement in neat triflic acid, which unexpectedly provided both an alternant and nonalternant dione. The rearrangement was characterized by spectroscopy and single crystal X-ray diffraction of Grignard addition products of both isomers. The relative yield of the rearranged, alternant product increased along with the initial concentration of its polycyclic aromatic hydrocarbon (PAH) precursor, implicating a bimolecular rearrangement mechanism and enabling the divergent synthesis of both the nonalternant and alternant products. These findings offer convenient access to functional derivatives of two PAH classes of interest for their optoelectronic properties and serve as yet another warning about the importance of characterizing these materials with care, especially when insoluble products must be carried forward in a multistep synthetic route.

18.
J Am Chem Soc ; 144(43): 19813-19824, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36265086

RESUMO

Two-dimensional (2D) covalent organic frameworks (COFs) are composed of structurally precise, permanently porous, layered macromolecular sheets, which are traditionally synthesized as polycrystalline solids with crystalline domain lengths smaller than 100 nm. Here, we polymerize imine-linked 2D COFs as suspensions of faceted single crystals in as little as 5 min at moderate temperature and ambient pressure. Single crystals of two imine-linked 2D COFs were prepared, consisting of a rhombic 2D COF (TAPPy-PDA) and a hexagonal 2D COF (TAPB-DMPDA). The sizes of TAPPy-PDA and TAPB-DMPDA crystals were tuned from 720 nm to 4 µm and 450 nm to 20 µm in width, respectively. High-resolution transmission electron microscopy revealed that the COF crystals consist of layered, 2D polymers comprising single-crystalline domains. Continuous rotation electron diffraction resolved the unit cell and crystal structure of both COFs, which are single-crystalline in the a-b plane but disordered in the stacking c dimension. Single crystals of both COFs were incorporated into gas chromatography separation columns and exhibited unusual selective retention of cyclohexane over benzene, with single-crystalline TAPPy-PDA significantly outperforming single-crystalline TAPB-DMPDA. Polycrystalline TAPPy-PDA exhibited no separation, while polycrystalline TAPB-DMPDA exhibited poor separation and the opposite order of elution, retaining benzene more than cyclohexane, indicating the importance of improved material quality for COFs to exhibit properties that derive from their precise, crystalline structures. This work represents the first example of synthesizing imine-linked 2D COF single crystals at ambient pressure and short reaction times and demonstrates the promise of high-quality COFs for molecular separations.

19.
Science ; 377(6608): 839-845, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35981038

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are persistent, bioaccumulative pollutants found in water resources at concentrations harmful to human health. Whereas current PFAS destruction strategies use nonselective destruction mechanisms, we found that perfluoroalkyl carboxylic acids (PFCAs) could be mineralized through a sodium hydroxide-mediated defluorination pathway. PFCA decarboxylation in polar aprotic solvents produced reactive perfluoroalkyl ion intermediates that degraded to fluoride ions (78 to ~100%) within 24 hours. The carbon-containing intermediates and products were inconsistent with oft-proposed one-carbon-chain shortening mechanisms, and we instead computationally identified pathways consistent with many experiments. Degradation was also observed for branched perfluoroalkyl ether carboxylic acids and might be extended to degrade other PFAS classes as methods to activate their polar headgroups are identified.


Assuntos
Ácidos Carboxílicos , Fluorocarbonos , Poluentes Químicos da Água , Ácidos Carboxílicos/análise , Fluorocarbonos/análise , Humanos , Temperatura , Poluentes Químicos da Água/análise
20.
Nature ; 609(7925): 58-64, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045237

RESUMO

Polymer membranes are widely used in separation processes including desalination1, organic solvent nanofiltration2,3 and crude oil fractionation4,5. Nevertheless, direct evidence of subnanometre pores and a feasible method of manipulating their size is still challenging because of the molecular fluctuations of poorly defined voids in polymers6. Macrocycles with intrinsic cavities could potentially tackle this challenge. However, unfunctionalized macrocycles with indistinguishable reactivities tend towards disordered packing in films hundreds of nanometres thick7-9, hindering cavity interconnection and formation of through-pores. Here, we synthesized selectively functionalized macrocycles with differentiated reactivities that preferentially aligned to create well-defined pores across an ultrathin nanofilm. The ordered structure was enhanced by reducing the nanofilm thickness down to several nanometres. This orientated architecture enabled direct visualization of subnanometre macrocycle pores in the nanofilm surfaces, with the size tailored to ångström precision by varying the macrocycle identity. Aligned macrocycle membranes provided twice the methanol permeance and higher selectivity compared to disordered counterparts. Used in high-value separations, exemplified here by enriching cannabidiol oil, they achieved one order of magnitude faster ethanol transport and threefold higher enrichment than commercial state-of-the-art membranes. This approach offers a feasible strategy for creating subnanometre channels in polymer membranes, and demonstrates their potential for accurate molecular separations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...