Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Front Immunol ; 13: 872295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634282

RESUMO

Antibodies that target immune checkpoints such as cytotoxic T lymphocyte antigen 4 (CTLA-4) and the programmed cell death protein 1/ligand 1 (PD-1/PD-L1) are now a treatment option for multiple cancer types. However, as a monotherapy, objective responses only occur in a minority of patients. Chemotherapy is widely used in combination with immune checkpoint blockade (ICB). Although a variety of isolated immunostimulatory effects have been reported for several classes of chemotherapeutics, it is unclear which chemotherapeutics provide the most benefit when combined with ICB. We investigated 10 chemotherapies from the main canonical classes dosed at the clinically relevant maximum tolerated dose in combination with anti-CTLA-4/anti-PD-L1 ICB. We screened these chemo-immunotherapy combinations in two murine mesothelioma models from two different genetic backgrounds, and identified chemotherapies that produced additive, neutral or antagonistic effects when combined with ICB. Using flow cytometry and bulk RNAseq, we characterized the tumor immune milieu in additive chemo-immunotherapy combinations. 5-fluorouracil (5-FU) or cisplatin were additive when combined with ICB while vinorelbine and etoposide provided no additional benefit when combined with ICB. The combination of 5-FU with ICB augmented an inflammatory tumor microenvironment with markedly increased CD8+ T cell activation and upregulation of IFNγ, TNFα and IL-1ß signaling. The effective anti-tumor immune response of 5-FU chemo-immunotherapy was dependent on CD8+ T cells but was unaffected when TNFα or IL-1ß cytokine signaling pathways were blocked. Our study identified additive and non-additive chemotherapy/ICB combinations and suggests a possible role for increased inflammation in the tumor microenvironment as a basis for effective combination therapy.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Animais , Linfócitos T CD8-Positivos , Fluoruracila/uso terapêutico , Humanos , Camundongos , Neoplasias/terapia , Microambiente Tumoral , Fator de Necrose Tumoral alfa/uso terapêutico
2.
Genome Med ; 14(1): 58, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637530

RESUMO

BACKGROUND: Malignant pleural mesothelioma (MPM) has a poor overall survival with few treatment options. Whole genome sequencing (WGS) combined with the immune features of MPM offers the prospect of identifying changes that could inform future clinical trials. METHODS: We analysed somatic mutations from 229 MPM samples, including previously published data and 58 samples that had undergone WGS within this study. This was combined with RNA-seq analysis to characterize the tumour immune environment. RESULTS: The comprehensive genome analysis identified 12 driver genes, including new candidate genes. Whole genome doubling was a frequent event that correlated with shorter survival. Mutational signature analysis revealed SBS5/40 were dominant in 93% of samples, and defects in homologous recombination repair were infrequent in our cohort. The tumour immune environment contained high M2 macrophage infiltrate linked with MMP2, MMP14, TGFB1 and CCL2 expression, representing an immune suppressive environment. The expression of TGFB1 was associated with overall survival. A small subset of samples (less than 10%) had a higher proportion of CD8 T cells and a high cytolytic score, suggesting a 'hot' immune environment independent of the somatic mutations. CONCLUSIONS: We propose accounting for genomic and immune microenvironment status may influence therapeutic planning in the future.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Genômica , Humanos , Neoplasias Pulmonares/genética , Mesotelioma/genética , Neoplasias Pleurais/genética , Neoplasias Pleurais/patologia , Microambiente Tumoral/genética
3.
J Thorac Oncol ; 17(7): 921-930, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35489694

RESUMO

INTRODUCTION: Pleural mesothelioma (PM) is an aggressive malignancy with no identified predictive biomarkers. We assessed whether tumor BAP1 status is a predictive biomarker for survival in patients receiving first-line combination platinum and pemetrexed therapy. METHODS: PM cases (n = 114) from Aalborg, Denmark, were stained for BAP1 on tissue microarrays. Demographic, clinical, and survival data were extracted from registries and medical records. Surgical cases were excluded. BAP1 status was associated with overall survival (OS) by Cox regression and Kaplan-Meier methods. Results were validated in an independent cohort from Perth, Australia (n = 234). RESULTS: BAP1 loss was found in 62% and 60.3% of all Danish and Australian samples, respectively. BAP1 loss was an independent predictor of OS in multivariate analyses corrected for histological subtype, performance status, age, sex, and treatment (hazard ratio = 2.49, p < 0.001, and 1.48, p = 0.01, respectively). First-line platinum and pemetrexed-treated patients with BAP1 loss had significantly longer median survival than those with retained BAP1 in both the Danish (20.1 versus 7.3 mo, p < 0.001) and Australian cohorts (19.6 versus 11.1 mo, p < 0.01). Survival in patients with BAP1 retained and treated with platinum and pemetrexed was similar as in those with best supportive care. There was a higher OS in patients with best supportive care with BAP1 loss, but it was significant only in the Australian cohort (16.8 versus 8.3 mo, p < 0.01). CONCLUSIONS: BAP1 is a predictive biomarker for survival after first-line combination platinum and pemetrexed chemotherapy and a potential prognostic marker in PM. BAP1 in tumor is a promising clinical tool for treatment stratification.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Austrália/epidemiologia , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Pemetrexede/uso terapêutico , Platina/uso terapêutico , Neoplasias Pleurais/patologia , Proteínas Supressoras de Tumor , Ubiquitina Tiolesterase
4.
Oncoimmunology ; 11(1): 2038403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186441

RESUMO

The process of tumorigenesis leaves a series of indelible genetic changes in tumor cells, that when expressed, have the potential to be tumor-specific immune targets. Neoantigen vaccines that capitalize on this potential immunogenicity have shown efficacy in preclinical models and have now entered clinical trials. Here we discuss the status of personalized neoantigen vaccines and the current major challenges to this nascent field. In particular, we focus on the types of antigens that can be targeted by vaccination and on the role that preexisting immunosuppression, and in particular T-cell exhaustion, will play in the development of effective cancer vaccines.


Assuntos
Vacinas Anticâncer , Neoplasias , Antígenos de Neoplasias/genética , Vacinas Anticâncer/uso terapêutico , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Vacinação
5.
PLoS One ; 16(4): e0250628, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33901252

RESUMO

Predicting survival of patients with malignant pleural effusions (MPEs) is notoriously difficult. A robust prognostic marker can guide clinical decision making. The neutrophil-to-lymphocyte ratio (NLR) in blood has been shown to predict survival in many cancers. Pleural fluid bathes the malignant pleural tissues, thus the NLR of the pleural fluid may reflect more closely the local tumour environment. The objective of this study was to explore the prognostic significance of pleural effusion NLR for MPE. We analysed matched effusion and blood from 117 patients with malignant and 24 with benign pleural effusions. Those who had received recent chemotherapy or had a pleurodesis were excluded. Neutrophil and lymphocyte counts in effusions were performed by manual review of cytospin cell preparations by trained observers. Clinical data were extracted from a state-wide hospital database. We found significantly fewer neutrophils (expressed as percentage of total leukocyte count) in pleural fluid than in corresponding blood (9% vs 73%; p<0.001). The NLR was an order of magnitude lower in pleural fluid than in corresponding blood: median [IQR] = 0.20 [0.04-1.18] vs 4.9 [3.0-8.3], p<0.001. Correlation between blood and pleural fluid NLR in MPE patients was moderate (rs = 0.321, p<0.001). In univariate analysis, NLR (>0.745)) in malignant pleural fluid was predictive of poorer survival (HR = 1.698 [1.0054-2.736]; p = 0.030), and remained significant after adjustment for age, sex, presence of a chest drain, cancer type, concurrent infection and subsequent treatment with chemotherapy (HR = 1.786 [1.089-2.928]; p = 0.022). Patients with pleural fluid NLR > 0.745 had a significantly shorter median survival of 130 (95% CI 0-282) days compared to 312 (95% CI 195-428) days for pleural NLR < 0.745, p = 0.026. The NLR in blood was also predictive of poorer survival in MPE patients (HR = 1.959 [1.019-3.096]; p<0.001). The proportion of neutrophils in pleural fluid was predictive of prognosis more strongly than lymphocytes. This study provides evidence that NLR in malignant effusions can predict survival, and therefore may provide prognostic information for this cohort. This prognostic association in the fluid is driven by the presence of neutrophils.


Assuntos
Linfócitos/citologia , Neutrófilos/citologia , Derrame Pleural Maligno/patologia , Idoso , Feminino , Humanos , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Derrame Pleural Maligno/mortalidade , Prognóstico , Modelos de Riscos Proporcionais , Taxa de Sobrevida
6.
Front Immunol ; 11: 584423, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33262762

RESUMO

Immune checkpoint therapy (ICT) results in durable responses in individuals with some cancers, but not all patients respond to treatment. ICT improves CD8+ cytotoxic T lymphocyte (CTL) function, but changes in tumor antigen-specific CTLs post-ICT that correlate with successful responses have not been well characterized. Here, we studied murine tumor models with dichotomous responses to ICT. We tracked tumor antigen-specific CTL frequencies and phenotype before and after ICT in responding and non-responding animals. Tumor antigen-specific CTLs increased within tumor and draining lymph nodes after ICT, and exhibited an effector memory-like phenotype, expressing IL-7R (CD127), KLRG1, T-bet, and granzyme B. Responding tumors exhibited higher infiltration of effector memory tumor antigen-specific CTLs, but lower frequencies of regulatory T cells compared to non-responders. Tumor antigen-specific CTLs persisted in responding animals and formed memory responses against tumor antigens. Our results suggest that increased effector memory tumor antigen-specific CTLs, in the presence of reduced immunosuppression within tumors is part of a successful ICT response. Temporal and nuanced analysis of T cell subsets provides a potential new source of immune based biomarkers for response to ICT.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Inibidores de Checkpoint Imunológico/imunologia , Memória Imunológica/imunologia , Animais , Antígenos de Neoplasias/imunologia , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Granzimas/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T Citotóxicos/imunologia , Linfócitos T Reguladores/imunologia
7.
Oncoimmunology ; 9(1): 1684713, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32002298

RESUMO

Neoantigens present unique and specific targets for personalized cancer immunotherapy strategies. Given the low mutational burden yet immunotherapy responsiveness of malignant mesothelioma (MM) when compared to other carcinogen-induced malignancies, identifying candidate neoantigens and T cells that recognize them has been a challenge. We used pleural effusions to gain access to MM tumor cells as well as immune cells in order to characterize the tumor-immune interface in MM. We characterized the landscape of potential neoantigens from SNVs identified in 27 MM patients and performed whole transcriptome sequencing of cell populations from 18 patient-matched pleural effusions. IFNγ ELISpot was performed to detect a CD8+ T cell responses to predicted neoantigens in one patient. We detected a median of 68 (range 7-258) predicted neoantigens across the samples. Wild-type non-binding to mutant binding predicted neoantigens increased risk of death in a model adjusting for age, sex, smoking status, histology and treatment (HR: 33.22, CI: 2.55-433.02, p = .007). Gene expression analysis indicated a dynamic immune environment within the pleural effusions. TCR clonotypes increased with predicted neoantigen burden. A strong activated CD8+ T-cell response was identified for a predicted neoantigen produced by a spontaneous mutation in the ROBO3 gene. Despite the challenges associated with the identification of bonafide neoantigens, there is growing evidence that these molecular changes can provide an actionable target for personalized therapeutics in difficult to treat cancers. Our findings support the existence of candidate neoantigens in MM despite the low mutation burden of the tumor, and may present improved treatment opportunities for patients.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Mesotelioma Maligno , Antígenos de Neoplasias/genética , Humanos , Imunoterapia , Mesotelioma Maligno/imunologia , Receptores de Superfície Celular
8.
Oncoimmunology ; 9(1): 1684714, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32002299

RESUMO

Immune checkpoint blockade (ICPB) is a powerfully effective cancer therapy in some patients. Tumor neo-antigens are likely main targets for attack but it is not clear which and how many tumor mutations in individual cancers are actually antigenic, with or without ICPB therapy and their role as neo-antigen vaccines or as predictors of ICPB responses. To examine this, we interrogated the immune response to tumor neo-antigens in a murine model in which the tumor is induced by a natural human carcinogen (i.e. asbestos) and mimics its human counterpart (i.e. mesothelioma). We identified and screened 33 candidate neo-antigens, and found T cell responses against one candidate in tumor-bearing animals, mutant UQCRC2. Interestingly, we found a high degree of inter-animal variation in the magnitude of neo-antigen responses in otherwise identical mice. ICPB therapy with Cytotoxic T-lymphocyte-associated protein (CTLA-4) and α-glucocorticoid-induced TNFR family related gene (GITR) in doses that induced tumor regression, increased the magnitude of responses and unmasked functional T cell responses against another neo-antigen, UNC45a. Importantly, the magnitude of the pre-treatment draining lymph node (dLN) response to UNC45a closely corresponded to ICPB therapy outcomes. Surprisingly however, boosting pre-treatment UNC45a-specific T cell numbers did not improve response rates to ICPB. These observations suggest a novel biomarker approach to the clinical prediction of ICPB response and have important implications for the development of neo-antigen vaccines.


Assuntos
Vacinas Anticâncer , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias , Animais , Antígenos de Neoplasias/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Linfonodos , Camundongos , Neoplasias/genética , Neoplasias/terapia , Linfócitos T Citotóxicos
9.
Oncoimmunology ; 8(11): e1641390, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31646089

RESUMO

Dexamethasone is a synthetic glucocorticoid commonly used for the prevention and management of side effects in cancer patients undergoing chemotherapy. While it is effective as an anti-emetic and in preventing hypersensitivity reactions, dexamethasone depletes peripheral blood lymphocytes and impacts immune responses. The effect of dexamethasone on the number and quality of tumour-infiltrating leukocytes has not been reported. To address this, we calibrated the dose in two different strains of mice to achieve the same extent of peripheral blood lymphocyte depletion observed in patients with cancer. Doses that caused analogous depletion of T and B lymphocytes and NK cells from the peripheral blood, elicited no change in these populations within the tumour. The expression of immune checkpoint molecules PD-1, OX40, GITR and TIM3 on tumour-infiltrating lymphocytes was not altered. We found that dexamethasone had a small but significant deleterious impact on weakly efficacious chemoimmunotherapy but had no effect when the protocol was highly efficacious. Based on these results, we predict that dexamethasone will have a modest negative influence on the overall effectiveness of chemoimmunotherapy treatment.

10.
Oncoimmunology ; 7(10): e1494111, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30288361

RESUMO

Mesothelioma is an aggressive asbestos induced cancer with extremely poor prognosis and limited treatment options. Immune checkpoint blockade (ICPB) has demonstrated effective therapy in melanoma and is now being applied to other cancers, including mesothelioma. However, the efficacy of ICPB and which immune checkpoint combinations constitute the best therapeutic option for mesothelioma have yet to be fully elucidated. Here, we used our well characterised mesothelioma tumour model to investigate the efficacy of different ICBP treatments to generate effective therapy for mesothelioma. We show that tumour resident regulatory T cell co-express high levels of CTLA-4, OX40 and GITR relative to T effector subsets and that these receptors are co-expressed on a large proportion of cells. Targeting any of CTLA-4, OX40 or GITR individually generated effective responses against mesothelioma. Furthermore, the combination of αCTLA-4 and αOX40 was synergistic, with an increase in complete tumour regressions from 20% to 80%. Other combinations did not synergise to enhance treatment outcomes. Finally, an early pattern in T cell response was predictive of response, with activation status and ICP receptor expression profile of T effector cells harvested from tumour and dLN correlating with response to immunotherapy. Taken together, these data demonstrate that combination ICPB can work synergistically to induce strong, durable immunity against mesothelioma in an animal model.

11.
Lung Cancer ; 119: 64-70, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29656754

RESUMO

OBJECTIVES: Malignant mesothelioma (MM) is an asbestos related tumour affecting cells of serosal cavities. More than 70% of MM patients develop pleural effusions which contain tumour cells, representing a readily accessible source of malignant cells for genetic analysis. Although common somatic mutations and losses have been identified in solid MM tumours, the characterization of tumour cells within pleural effusions could provide novel insights but is little studied. MATERIALS AND METHODS: DNA and RNA were extracted from cells from short term cultures of 27 human MM pleural effusion samples. Whole exome and transcriptome sequencing was performed using the Ion Torrent platform. Somatic mutations were identified using VarScan2 and SomaticSniper. Copy number alterations were identified using ExomeCNV in R. Significant copy number alterations were identified across all samples using GISTIC2.0. The association between tumour intrinsic properties and survival was analyzed using the Cox proportional hazards regression model. RESULTS: We identified BAP1, CDKN2A and NF2 alterations in the cells from MM pleural effusions at a higher frequency than what is typically seen in MM tumours from surgical series. The median mutation rate was 1.09 mutations/Mb. TRAF7 and LATS2 alterations were also identified at a high frequency (66% and 59% respectively). Novel regions of interest were identified, including alterations in FGFR3, and the regions 19p13.3, 8p23.1 and 1p36.32. CONCLUSION: Short term cultures of tumour cells from MM pleural effusions offer an accessible alternative to surgical tumour biopsies in the study of MM genomics and reveal novel mutations of interest. Pleural effusion tumour cells provide an opportunity for the monitoring of tumour dynamics, treatment response and the clonal evolution of MM tumours.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Neoplasias Pulmonares/genética , Mesotelioma/genética , Mutação/genética , Neurofibromina 2/genética , Derrame Pleural Maligno/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Idoso , Idoso de 80 Anos ou mais , Amianto/efeitos adversos , Variações do Número de Cópias de DNA , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Mesotelioma/patologia , Mesotelioma Maligno , Pessoa de Meia-Idade , Derrame Pleural Maligno/patologia , Células Tumorais Cultivadas
12.
BMC Cancer ; 17(1): 396, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28577549

RESUMO

BACKGROUND: Malignant mesothelioma (MM) is an aggressive cancer of the pleural and peritoneal cavities caused by exposure to asbestos. Asbestos-induced mesotheliomas in wild-type mice have been used extensively as a preclinical model because they are phenotypically identical to their human counterpart. However, it is not known if the genetic lesions in these mice tumours are similar to in the human disease, a prerequisite for any new preclinical studies that target genetic abnormalities. METHODS: We performed whole exome sequencing of fifteen asbestos-induced murine MM tumour cell lines from BALB/c, CBA and C57BL/6 mouse strains and compared the somatic mutations and copy number variations with those recurrently reported in human MM. We then catalogued and characterised the mutational landscape of the wild-type murine MM tumours. Quantitative RT-PCR was used to interrogate the expression of key MM genes of interest in the mRNA. RESULTS: Consistent with human MM tumours, we identified homozygous loss of the tumour suppressor Cdkn2a in 14/15 tumours. One tumour retained the first exon of both of the p16INK4a and p19ARF isoforms though this tumour also contained genetic amplification of Myc resulting in increased expression of the c-Myc proto-oncogene in the mRNA. There were no chromosomal losses in either the Bap1 or Nf2 regions. One tumour harbored homozygous loss of Trp53 in the DNA. Mutation rates were similar in tumours generated in the CBA and C57BL/6 strains when compared to human MM. Interestingly, all BALB/c tumour lines displayed high mutational loads, consistent with the known mutator phenotype of the host strain. The Wnt, MAPK and Jak-STAT signaling pathways were found to be the most commonly affected biological pathways. Mutations and copy number deletions also occurred in the Hedgehog and Hippo pathways. CONCLUSIONS: These data suggest that in the wild-type murine model asbestos causes mesotheliomas in a similar way to in human MM. This further supports the notion that the murine model of MM represents a genuine homologue of the human disease, something uncommon in cancer, and is thus a valuable tool to provide insight into MM tumour development and to aide the search for novel therapeutic strategies.


Assuntos
Amianto/toxicidade , Sequenciamento do Exoma , Neoplasias Pulmonares/genética , Mesotelioma/genética , Proteínas de Neoplasias/genética , Animais , Variações do Número de Cópias de DNA/genética , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Mesotelioma/induzido quimicamente , Mesotelioma/patologia , Mesotelioma Maligno , Camundongos , Mutação , Proto-Oncogene Mas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
13.
Cancer Genomics Proteomics ; 14(2): 103-117, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28387650

RESUMO

Backgound/Aim: Malignant mesothelioma (MM) is an aggressive and fatal pleural cancer. The cell secretome offers information allowing insight into the pathogenesis of MM while offering the possibility to identify potential therapeutic targets and biomarkers. In the present study the secretome protein profile of MM cell lines was compared to normal mesothelial cells. MATERIALS AND METHODS: Six MM cell lines were compared against three primary mesothelial cell culture preparations using iTRAQ® mass spectrometry. RESULTS: MM cell lines more abundantly secreted exosome-associated proteins than mesothelial cells. MM cell secretomes were enriched in proteins that are involved in response to stress, carbon metabolism, biosynthesis of amino acids, antigen processing and presentation and protein processing in the endoplasmic reticulum. CONCLUSION: The MM cell secretome is enriched in proteins that are likely to enhance its growth and response to stress and help it inhibit an adaptive immune response. These are potential targets for therapeutic and biomarker discovery.


Assuntos
Marcação por Isótopo/métodos , Espectrometria de Massas/métodos , Proteoma/metabolismo , Proteômica/métodos , Idoso , Linhagem Celular Tumoral , Células Cultivadas , Análise por Conglomerados , Exossomos/genética , Exossomos/metabolismo , Feminino , Ontologia Genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Mesotelioma/metabolismo , Mesotelioma/patologia , Mesotelioma Maligno , Pessoa de Meia-Idade , Análise de Componente Principal , Proteoma/classificação , Proteoma/genética
14.
Immun Inflamm Dis ; 5(1): 16-28, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28250921

RESUMO

INTRODUCTION: Regulatory T cells (Treg) play an important role in suppressing anti- immunity and their depletion has been linked to improved outcomes. To better understand the role of Treg in limiting the efficacy of anti-cancer immunity, we used a Diphtheria toxin (DTX) transgenic mouse model to specifically target and deplete Treg. METHODS: Tumor bearing BALB/c FoxP3.dtr transgenic mice were subjected to different treatment protocols, with or without Treg depletion and tumor growth and survival monitored. RESULTS: DTX specifically depleted Treg in a transient, dose-dependent manner. Treg depletion correlated with delayed tumor growth, increased effector T cell (Teff) activation, and enhanced survival in a range of solid tumors. Tumor regression was dependent on Teffs as depletion of both CD4 and CD8 T cells completely abrogated any survival benefit. Severe morbidity following Treg depletion was only observed, when consecutive doses of DTX were given during peak CD8 T cell activation, demonstrating that Treg can be depleted on multiple occasions, but only when CD8 T cell activation has returned to base line levels. Finally, we show that even minimal Treg depletion is sufficient to significantly improve the efficacy of tumor-peptide vaccination. CONCLUSIONS: BALB/c.FoxP3.dtr mice are an ideal model to investigate the full therapeutic potential of Treg depletion to boost anti-tumor immunity. DTX-mediated Treg depletion is transient, dose-dependent, and leads to strong anti-tumor immunity and complete tumor regression at high doses, while enhancing the efficacy of tumor-specific vaccination at low doses. Together this data highlight the importance of Treg manipulation as a useful strategy for enhancing current and future cancer immunotherapies.


Assuntos
Vacinas Anticâncer/farmacologia , Toxina Diftérica/farmacologia , Depleção Linfocítica , Neoplasias/imunologia , Linfócitos T Reguladores/imunologia , Animais , Linhagem Celular Tumoral , Epitopos , Fatores de Transcrição Forkhead/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Imunoterapia , Camundongos Transgênicos , Neoplasias/terapia , Peptídeos/farmacologia , Vacinação
15.
Sci Rep ; 6: 32643, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27605433

RESUMO

Malignant mesothelioma (MM) is a highly-aggressive heterogeneous malignancy, typically diagnosed at advanced stage. An important area of mesothelioma biology and progression is understanding intercellular communication and the contribution of the secretome. Exosomes are secreted extracellular vesicles shown to shuttle cellular cargo and direct intercellular communication in the tumour microenvironment, facilitate immunoregulation and metastasis. In this study, quantitative proteomics was used to investigate MM-derived exosomes from distinct human models and identify select cargo protein networks associated with angiogenesis, metastasis, and immunoregulation. Utilising bioinformatics pathway/network analyses, and correlation with previous studies on tumour exosomes, we defined a select mesothelioma exosomal signature (mEXOS, 570 proteins) enriched in tumour antigens and various cancer-specific signalling (HPGD/ENO1/OSMR) and secreted modulators (FN1/ITLN1/MAMDC2/PDGFD/GBP1). Notably, such circulating cargo offers unique insights into mesothelioma progression and tumour microenvironment reprogramming. Functionally, we demonstrate that oncogenic exosomes facilitate the migratory capacity of fibroblast/endothelial cells, supporting the systematic model of MM progression associated with vascular remodelling and angiogenesis. We provide biophysical and proteomic characterisation of exosomes, define a unique oncogenic signature (mEXOS), and demonstrate the regulatory capacity of exosomes in cell migration/tube formation assays. These findings contribute to understanding tumour-stromal crosstalk in the context of MM, and potential new diagnostic and therapeutic extracellular targets.


Assuntos
Exossomos/genética , Neoplasias Pulmonares/genética , Mesotelioma/genética , Proteínas de Neoplasias/genética , Proteômica , Comunicação Celular/genética , Linhagem Celular Tumoral , Exossomos/patologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Mesotelioma Maligno , Microambiente Tumoral/genética
16.
Biomarkers ; 21(6): 551-61, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27009350

RESUMO

The asbestos induced cancer malignant mesothelioma (MM) is difficult to diagnose and has a poor prognosis. MM is an immunological cancer, therefore autoantibodies may be suitable biomarkers and associated with prognosis. We used Protoarray(®) microarrays to determine immune responses to 8798 antigens in 10 MM and 10 asbestos exposed controls and developed diagnostic panels using 17 antigens from this. The AUC of these panels were independently tested in these 10 MM patients and controls and in a validation group of 36 controls and 35 MM patients using luminex assays; none of the antigens identified were validated. Immune responses to RAB38 were associated with a better prognosis.


Assuntos
Biomarcadores Tumorais/sangue , Mesotelioma/diagnóstico , Neoplasias Pleurais/diagnóstico , Idoso , Anticorpos Antineoplásicos/sangue , Antígenos de Neoplasias/sangue , Antígenos de Neoplasias/imunologia , Amianto/toxicidade , Autoanticorpos/sangue , Biomarcadores Tumorais/imunologia , Estudos de Casos e Controles , Exposição Ambiental , Feminino , Ontologia Genética , Humanos , Masculino , Mesotelioma/sangue , Mesotelioma/imunologia , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Neoplasias Pleurais/sangue , Neoplasias Pleurais/imunologia , Prognóstico , Estudos Retrospectivos , Proteínas rab de Ligação ao GTP/imunologia
17.
BMC Cancer ; 15: 983, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26680231

RESUMO

BACKGROUND: The MexTAg transgenic mouse model of mesothelioma replicates many aspects of human mesothelioma, including induction by asbestos, pathogenicity and response to cytotoxic chemotherapy, despite high levels of the SV40 large T Antigen (TAg) in the mesothelial compartment. This model enables analysis of the molecular events associated with asbestos induced mesothelioma and is utilised here to investigate the molecular dynamics of tumours induced in these mice, using gene expression patterns as a read out. METHODS: Gene expression of MexTAg mesothelioma cell lines bearing a high or low number of copies of the TAg transgene were compared to wild type mouse mesotheliomas and normal mouse mesothelial cells using Affymetrix microarray. These data were then compared to a similar published human microarray study using the same platform. RESULTS: The main expression differences between transgenic mouse and wild type mouse mesotheliomas occurred for genes involved in cell cycle regulation and DNA replication, as would be expected from overexpression of the TAg oncogene. Quantitative PCR confirmed that E2F and E2F regulated genes were significantly more upregulated in MexTAg mesotheliomas and MexTAg mesothelial cells compared to wild type mesotheliomas. Like human mesothelioma, both MexTAg and wild type mesotheliomas had more genes underexpressed than overexpressed compared to normal mouse mesothelial cells. Most notably, the cdkn2 locus was deleted in the wild type mouse mesotheliomas, consistent with 80 % human mesotheliomas, however, this region was not deleted in MexTAg mesotheliomas. Regardless of the presence of TAg, all mouse mesotheliomas had a highly concordant set of deregulated genes compared to normal mesothelial cells that overlapped with the deregulated genes between human mesotheliomas and mesothelial cells. CONCLUSIONS: This investigation demonstrates that the MexTAg mesotheliomas are comparable with wild type mouse mesotheliomas in their representation of human mesothelioma at the molecular level, with some key gene expression differences that are attributable to the TAg transgene expression. Of particular note, MexTAg mesothelioma development was not dependent on cdkn2 deletion.


Assuntos
Antígenos Virais de Tumores/genética , Amianto/efeitos adversos , Perfilação da Expressão Gênica/métodos , Mesotelioma/genética , Animais , Antígenos Virais de Tumores/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Fatores de Transcrição E2F/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Mesotelioma/induzido quimicamente , Mesotelioma/patologia , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos/métodos
18.
Oncoimmunology ; 4(7): e1011492, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26140232

RESUMO

A key to improving cancer immunotherapy will be the identification of tumor-specific "neoantigens" that arise from mutations and augment the resultant host immune response. In this study we identified single nucleotide variants (SNVs) by RNA sequencing of asbestos-induced murine mesothelioma cell lines AB1 and AB1-HA. Using the NetMHCpan 2.8 algorithm, the theoretical binding affinity of predicted peptides arising from high-confidence, exonic, non-synonymous SNVs was determined for the BALB/c strain. The immunoreactivity to 20 candidate mutation-carrying peptides of increased affinity and the corresponding wild-type peptides was determined using interferon-γ ELISPOT assays and lymphoid organs of non-manipulated tumor-bearing mice. A strong endogenous immune response was demonstrated to one of the candidate neoantigens, Uqcrc2; this response was detected in the draining lymph node and spleen. Antigen reactive cells were not detected in non-tumor bearing mice. The magnitude of the response to the Uqcrc2 neoantigen was similar to that of the strong influenza hemagglutinin antigen, a model tumor neoantigen. This work confirms that the approach of RNAseq plus peptide prediction and ELISPOT testing is sufficient to identify natural tumor neoantigens.

19.
Sci Rep ; 5: 12298, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26193793

RESUMO

Cancer immunotherapy has shown impressive results, but most patients do not respond. We hypothesized that the effector response in the tumour could be visualized as a complex network of interacting gene products and that by mapping this network we could predict effective pharmacological interventions. Here, we provide proof of concept for the validity of this approach in a murine mesothelioma model, which displays a dichotomous response to anti-CTLA4 immune checkpoint blockade. Network analysis of gene expression profiling data from responding versus non-responding tumours was employed to identify modules associated with response. Targeting the modules via selective modulation of hub genes or alternatively by using repurposed pharmaceuticals selected on the basis of their expression perturbation signatures dramatically enhanced the efficacy of CTLA4 blockade in this model. Our approach provides a powerful platform to repurpose drugs, and define contextually relevant novel therapeutic targets.


Assuntos
Antineoplásicos/uso terapêutico , Redes Reguladoras de Genes , Imunoterapia , Mesotelioma/tratamento farmacológico , Mesotelioma/imunologia , Animais , Antineoplásicos/farmacologia , Antígeno CTLA-4/imunologia , Combinação de Medicamentos , Reposicionamento de Medicamentos , Sinergismo Farmacológico , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Mesotelioma/genética , Camundongos Endogâmicos BALB C , Indução de Remissão
20.
Curr Opin Pulm Med ; 21(4): 352-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26016578

RESUMO

PURPOSE OF REVIEW: Malignant mesothelioma is an asbestos-induced, aggressive tumour, which frequently presents with pleural effusion. There are over 60 reported causes that can result in the development of a pleural effusion. Currently, there are no tumour biomarkers in widespread clinical use for the differential diagnosis of mesothelioma from other diseases. With the incidence of mesothelioma expected to continue to increase, it is timely to review the current status of effusion-based biomarkers for mesothelioma diagnosis. RECENT FINDINGS: The majority of recent studies have evaluated soluble mesothelin in effusions in a diagnostic setting for mesothelioma. However, at high specificity, the sensitivity of the assay is limited to approximately 60% at the time of diagnosis. There is considerable research effort directed toward the identification of new markers for mesothelioma through a variety of genomic, proteomic and immunomic based platforms. One of the few new biomarkers to be identified through a biomarker discovery pipeline and evaluated in pleural effusions is fibulin-3. Preliminary results on the diagnostic accuracy of fibulin-3 have been inconsistent. SUMMARY: To date, soluble mesothelin remains the best available biomarker for mesothelioma and a positive result is clinically useful in patients with pleural effusions in whom the diagnosis is uncertain.


Assuntos
Neoplasias Pulmonares , Mesotelioma , Derrame Pleural , Biomarcadores Tumorais , Diagnóstico Diferencial , Proteínas da Matriz Extracelular , Proteínas Ligadas por GPI , Humanos , Mesotelina , Mesotelioma Maligno , Derrame Pleural/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...