Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Ther ; 41(6): 2446-2459, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38709394

RESUMO

INTRODUCTION: Spinal muscular atrophy (SMA) is a neuromuscular disease caused by deletions and/or mutations in the survival of motor neuron 1 (SMN1) gene. Risdiplam, the first and only oral SMN2 pre-mRNA splicing modifier, is US Food and Drug Administration-approved for the treatment of pediatric and adult patients with SMA. For patients with SMA, long-term adherence to and persistence with an SMA treatment may be important for achieving maximum clinical benefits. However, real-world evidence on patient adherence to and persistence with risdiplam is limited. METHODS: This retrospective study examined real-world adherence and persistence with risdiplam from a specialty pharmacy in patients with SMA over a 12-month period. Adherence was estimated by using proportion of days covered (PDC) and was calculated over variable (time between first and last fill) and fixed (time from first fill to study period end) intervals. Persistence was defined as no gap in supply ≥ 90 days. Patients were included if the time between the index date and study observation period was ≥ 12 months, if they initiated risdiplam between August 2020 and September 2022, received ≥ 2 risdiplam fills, and had an SMA diagnosis associated with a risdiplam fill. Subgroup analyses of risdiplam adherence and persistence were performed by age and primary payer type. RESULTS: The proportion of patients (N = 1636) adherent at 12 months based on variable and fixed interval PDC was 93% and 79%, respectively. Adherence was high among patients on commercial insurance, Medicaid, or Medicare (range 86-96%). Mean persistence was 330.4 days. The highest proportion of patients who were persistent were on Medicaid (81%). CONCLUSION: These findings demonstrate that patient adherence to and persistence with risdiplam treatment were high, including across all subgroups tested.


Assuntos
Adesão à Medicação , Atrofia Muscular Espinal , Pirimidinas , Humanos , Estudos Retrospectivos , Adesão à Medicação/estatística & dados numéricos , Masculino , Atrofia Muscular Espinal/tratamento farmacológico , Feminino , Pirimidinas/uso terapêutico , Adulto , Criança , Pré-Escolar , Adolescente , Lactente , Estados Unidos , Adulto Jovem , Pessoa de Meia-Idade , Revisão da Utilização de Seguros , Compostos Azo
2.
Ann Clin Transl Neurol ; 9(6): 810-818, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35567422

RESUMO

OBJECTIVE: The US risdiplam expanded access program (EAP; NCT04256265) was opened to provide individuals with Type 1 or 2 spinal muscular atrophy (SMA) who had no satisfactory treatment options access to risdiplam prior to commercial availability. The program was designed to collect safety data during risdiplam treatment. METHODS: Patients were enrolled from 23 non-preselected sites across 17 states and treated with risdiplam orally once daily. Eligible patients had a 5q autosomal recessive Type 1 or 2 SMA diagnosis, were aged ≥2 months at enrollment, and were ineligible for available and approved SMA treatments or could not continue treatment due to a medical condition, lack/loss of efficacy, or the COVID-19 pandemic. RESULTS: Overall, 155 patients with Type 1 (n = 73; 47.1%) or 2 SMA (n = 82; 52.9%) were enrolled and 149 patients (96.1%) completed the EAP (defined as obtaining access to commercial risdiplam, if desired). The median treatment duration was 4.8 months (range, 0.3-9.2 months). The median patient age was 11 years (range, 0-50 years), and most patients (n = 121; 78%) were previously treated with a disease-modifying therapy. The most frequently reported adverse events were diarrhea (n = 10; 6.5%), pyrexia (n = 7; 4.5%), and upper respiratory tract infection (n = 5; 3.2%). The most frequently reported serious adverse event was pneumonia (n = 3; 1.9%). No deaths were reported. INTERPRETATION: In the EAP, the safety profile of risdiplam was similar to what was reported in pivotal risdiplam clinical trials. These safety data provide further support for the use of risdiplam in the treatment of adult and pediatric patients with SMA.


Assuntos
Tratamento Farmacológico da COVID-19 , Atrofia Muscular Espinal , Adulto , Compostos Azo/uso terapêutico , Criança , Humanos , Atrofia Muscular Espinal/tratamento farmacológico , Pandemias , Pirimidinas
3.
Development ; 143(9): 1560-70, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27143756

RESUMO

During development of the peripheral nervous system, excess neurons are generated, most of which will be lost by programmed cell death due to a limited supply of neurotrophic factors from their targets. Other environmental factors, such as 'competition factors' produced by neurons themselves, and axon guidance molecules have also been implicated in developmental cell death. Semaphorin 3A (Sema3A), in addition to its function as a chemorepulsive guidance cue, can also induce death of sensory neurons in vitro The extent to which Sema3A regulates developmental cell death in vivo, however, is debated. We show that in compartmentalized cultures of rat sympathetic neurons, a Sema3A-initiated apoptosis signal is retrogradely transported from axon terminals to cell bodies to induce cell death. Sema3A-mediated apoptosis utilizes the extrinsic pathway and requires both neuropilin 1 and plexin A3. Sema3A is not retrogradely transported in older, survival factor-independent sympathetic neurons, and is much less effective at inducing apoptosis in these neurons. Importantly, deletion of either neuropilin 1 or plexin A3 significantly reduces developmental cell death in the superior cervical ganglia. Taken together, a Sema3A-initiated apoptotic signaling complex regulates the apoptosis of sympathetic neurons during the period of naturally occurring cell death.


Assuntos
Apoptose/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neuropilina-1/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforina-3A/metabolismo , Gânglio Cervical Superior/embriologia , Sistema Nervoso Simpático/embriologia , Animais , Axônios/metabolismo , Caspase 3/metabolismo , Células Cultivadas , Camundongos , Camundongos Knockout , Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Neuropilina-1/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Receptores de Superfície Celular/genética , Transdução de Sinais , Gânglio Cervical Superior/citologia , Gânglio Cervical Superior/fisiologia
4.
Cell ; 163(7): 1783-1795, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26687362

RESUMO

Touch perception begins with activation of low-threshold mechanoreceptors (LTMRs) in the periphery. LTMR terminals exhibit tremendous morphological heterogeneity that specifies their mechanical receptivity. In a survey of mammalian skin, we found a preponderance of neurofilament-heavy-chain(+) circumferential endings associated with hair follicles, prompting us to develop a genetic strategy to interrogate these neurons. Targeted in vivo recordings revealed them to be Aß field-LTMRs, identified 50 years ago but largely elusive thereafter. Remarkably, while Aß field-LTMRs are highly sensitive to gentle stroking of the skin, they are unresponsive to hair deflection, and they encode skin indentation in the noxious range across large, spotty receptive fields. Individual Aß field-LTMRs form up to 180 circumferential endings, making them the most anatomically expansive LTMR identified to date. Thus, Aß field-LTMRs are a major mammalian LTMR subtype that forms circumferential endings in hairy skin, and their sensitivity to gentle skin stroking arises through integration across many low-sensitivity circumferential endings.


Assuntos
Mecanorreceptores/metabolismo , Tato , Animais , Axônios/metabolismo , Tronco Encefálico/metabolismo , Fenômenos Eletrofisiológicos , Folículo Piloso/metabolismo , Filamentos Intermediários/metabolismo , Camundongos , Células Receptoras Sensoriais/metabolismo , Pele/citologia , Pele/metabolismo , Corno Dorsal da Medula Espinal/metabolismo
5.
J Cell Sci ; 126(Pt 1): 209-20, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23132925

RESUMO

In the injured adult mammalian central nervous system (CNS), products are generated that inhibit neuronal sprouting and regeneration. In recent years, most attention has focused on the myelin-associated inhibitory proteins (MAIs) Nogo-A, OMgp, and myelin-associated glycoprotein (MAG). Binding of MAIs to neuronal cell-surface receptors leads to activation of RhoA, growth cone collapse, and neurite outgrowth inhibition. In the present study, we identify low-density lipoprotein (LDL) receptor-related protein-1 (LRP1) as a high-affinity, endocytic receptor for MAG. In contrast with previously identified MAG receptors, binding of MAG to LRP1 occurs independently of terminal sialic acids. In primary neurons, functional inactivation of LRP1 with receptor-associated protein, depletion by RNA interference (RNAi) knock-down, or LRP1 gene deletion is sufficient to significantly reverse MAG and myelin-mediated inhibition of neurite outgrowth. Similar results are observed when LRP1 is antagonized in PC12 and N2a cells. By contrast, inhibiting LRP1 does not attenuate inhibition of neurite outgrowth caused by chondroitin sulfate proteoglycans. Mechanistic studies in N2a cells showed that LRP1 and p75NTR associate in a MAG-dependent manner and that MAG-mediated activation of RhoA may involve both LRP1 and p75NTR. LRP1 derivatives that include the complement-like repeat clusters CII and CIV bind MAG and other MAIs. When CII and CIV were expressed as Fc-fusion proteins, these proteins, purified full-length LRP1 and shed LRP1 all attenuated the inhibition of neurite outgrowth caused by MAG and CNS myelin in primary neurons. Collectively, our studies identify LRP1 as a novel MAG receptor that functions in neurite outgrowth inhibition.


Assuntos
Sistema Nervoso Central/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Bainha de Mielina/metabolismo , Glicoproteína Associada a Mielina/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neuritos/metabolismo , Animais , Células CHO , Células COS , Linhagem Celular , Cricetinae , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Espectrometria de Massas , Bainha de Mielina/genética , Glicoproteína Associada a Mielina/genética , Proteínas do Tecido Nervoso , Células PC12 , Ligação Proteica , Ratos , Receptores de Fatores de Crescimento , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo
6.
Nat Neurosci ; 15(5): 703-12, 2012 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-22406547

RESUMO

In the adult mammalian CNS, chondroitin sulfate proteoglycans (CSPGs) and myelin-associated inhibitors (MAIs) stabilize neuronal structure and restrict compensatory sprouting following injury. The Nogo receptor family members NgR1 and NgR2 bind to MAIs and have been implicated in neuronal inhibition. We found that NgR1 and NgR3 bind with high affinity to the glycosaminoglycan moiety of proteoglycans and participate in CSPG inhibition in cultured neurons. Nogo receptor triple mutants (Ngr1(-/-); Ngr2(-/-); Ngr3(-/-); which are also known as Rtn4r, Rtn4rl2 and Rtn4rl1, respectively), but not single mutants, showed enhanced axonal regeneration following retro-orbital optic nerve crush injury. The combined loss of Ngr1 and Ngr3 (Ngr1(-/-); Ngr3(-/-)), but not Ngr1 and Ngr2 (Ngr1(-/-); Ngr2(-/-)), was sufficient to mimic the triple mutant regeneration phenotype. Regeneration in Ngr1(-/-); Ngr3(-/-) mice was further enhanced by simultaneous ablation of Rptpσ (also known as Ptprs), a known CSPG receptor. Collectively, our results identify NgR1 and NgR3 as CSPG receptors, suggest that there is functional redundancy among CSPG receptors, and provide evidence for shared mechanisms of MAI and CSPG inhibition.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas da Mielina/metabolismo , Glicoproteína Associada a Mielina/metabolismo , Neurônios/metabolismo , Receptores de Superfície Celular/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Células Cultivadas , Sistema Nervoso Central/citologia , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Proteínas Ligadas por GPI/deficiência , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Gânglios Espinais/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Knockout , Mutação/genética , Proteínas da Mielina/deficiência , Proteínas da Mielina/genética , Glicoproteína Associada a Mielina/genética , Regeneração Nervosa/fisiologia , Neurônios/efeitos dos fármacos , Receptor Nogo 1 , Traumatismos do Nervo Óptico/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Ratos , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/farmacologia , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Transfecção , Tubulina (Proteína)/metabolismo
7.
Neuron ; 70(5): 808-12, 2011 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-21658576

RESUMO

Vascular endothelial growth factor (VEGF) family members are best known for their powerful mitotic and angiogenic activities toward endothelial cells. Two independent studies in this issue of Neuron now provide compelling evidence that VEGF-A secreted at the CNS midline functions as an attractant for developing axons of spinal commissural neurons and contralaterally projecting retinal ganglion cells.

8.
Blood ; 113(14): 3190-7, 2009 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-19196868

RESUMO

Mature myeloid cells (macrophages and CD11b(+) dendritic cells) form a prominent component of neuroinflammatory infiltrates in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). The mechanism by which these cells are replenished during relapsing and chronic neuroinflammation is poorly understood. Here we demonstrate that CD11b(+)CD62L(+)Ly6C(hi) monocytes with colony-forming potential are mobilized into the bloodstream by a granulocyte-macrophage colony-stimulating factor-dependent pathway immediately before EAE relapses. Circulating Ly6C(hi) monocytes traffic across the blood-brain barrier, up-regulate proinflammatory molecules, and differentiate into central nervous system dendritic cells and macrophages. Enrichment of Ly6C(hi) monocytes in the circulating pool is associated with an earlier onset and increased severity of clinical EAE. Our studies indicate that granulocyte-macrophage colony-stimulating factor-driven release of Ly6C(hi) precursors from the bone marrow prevents exhaustion of central nervous system myeloid populations during relapsing or chronic autoimmune demyelination, suggesting a novel pathway for therapeutic targeting.


Assuntos
Antígenos Ly/metabolismo , Movimento Celular/fisiologia , Sistema Nervoso Central/patologia , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/etiologia , Células Progenitoras Mieloides/fisiologia , Animais , Antígenos Ly/sangue , Sistema Nervoso Central/imunologia , Doença Crônica , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/imunologia , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/patologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Monócitos/patologia , Células Progenitoras Mieloides/metabolismo , Células Progenitoras Mieloides/patologia , Mielopoese/genética , Recidiva , Índice de Gravidade de Doença
9.
J Neurosci ; 28(12): 3246-56, 2008 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-18354028

RESUMO

Voltage-gated Na(+) channel beta1 subunits are multifunctional, participating in channel modulation and cell adhesion in vitro. We previously demonstrated that beta1 promotes neurite outgrowth of cultured cerebellar granule neurons (CGNs) via homophilic adhesion. Both lipid raft-associated kinases and nonraft fibroblast growth factor (FGF) receptors are implicated in cell adhesion molecule-mediated neurite extension. In the present study, we reveal that beta1-mediated neurite outgrowth is abrogated in Fyn and contactin (Cntn) null CGNs. beta1 protein levels are unchanged in Fyn null brains, whereas levels are significantly reduced in Cntn null brain lysates. FGF or EGF (epidermal growth factor) receptor kinase inhibitors have no effect on beta1-mediated neurite extension. These results suggest that beta1-mediated neurite outgrowth occurs through a lipid raft signaling mechanism that requires the presence of both fyn kinase and contactin. In vivo, Scn1b null mice show defective CGN axon extension and fasciculation indicating that beta1 plays a role in cerebellar microorganization. In addition, we find that axonal pathfinding and fasciculation are abnormal in corticospinal tracts of Scn1b null mice consistent with the suggestion that beta1 may have widespread effects on postnatal neuronal development. These data are the first to demonstrate a cell-adhesive role for beta1 in vivo. We conclude that voltage-gated Na(+) channel beta1 subunits signal via multiple pathways on multiple timescales and play important roles in the postnatal development of the CNS.


Assuntos
Sistema Nervoso Central/crescimento & desenvolvimento , Neuritos/fisiologia , Neurônios/citologia , Proteínas Proto-Oncogênicas c-fyn/fisiologia , Canais de Sódio/fisiologia , Aminoácidos , Análise de Variância , Animais , Animais Recém-Nascidos , Bromodesoxiuridina/metabolismo , Proliferação de Células , Células Cultivadas , Sistema Nervoso Central/citologia , Queratinócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-fyn/deficiência , Canais de Sódio/deficiência , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem
10.
Genesis ; 45(9): 547-53, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17868089

RESUMO

The voltage-gated sodium channel gene Scn1b encodes the auxiliary subunit beta1, which is widely distributed in neurons and glia of the central and peripheral nervous systems, cardiac myocytes, skeletal muscle myocytes, and neuroendocrine cells. We showed previously that the Scn1b null mutation results in a complex and severe phenotype that includes retarded growth, seizures, ataxia, and death by postnatal day 21. We generated a floxed allele of Scn1b by inserting loxP sites surrounding the second coding exon. Ubiquitous deletion of the floxed exon by Cre recombinase using CMV-Cre-transgenic mice produced the Scn1b(del) allele. The null phenotype of Scn1b(del) homozygotes is indistinguishable from that of Scn1b nulls and confirms the invivo inactivation of Scn1b. Conditional inactivation ofthe floxed allele will make it possible to circumvent the lethality that results from complete loss of this gene, such that the physiological role of Scn1b in specific cell types and/or specific developmental time points can be investigated.


Assuntos
Regulação da Expressão Gênica , Marcação de Genes/métodos , Canais de Sódio/genética , Alelos , Animais , Encéfalo/metabolismo , Células Cultivadas , Cruzamentos Genéticos , Integrases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos , Canais de Sódio/metabolismo , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...