Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Orthop Res ; 41(6): 1228-1239, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36281531

RESUMO

Calcitonin gene-related peptide (CGRP) is a neuropeptide produced by sensory nerves and functions as a pain sensor. It acts by binding to the calcitonin-like receptor (CLR, protein; Calcrl, gene). CGRP inhibition has been recently introduced as therapeutic treatment of migraine-associated pain. Previous studies have shown that CGRP stimulates bone formation. The aim of our study is to determine whether the inhibition of CGRP signaling negatively impacted fracture healing. Using α-smooth muscle actin (αSMA) Cre animals crossed with Ai9 reporter mice, we showed that CGRP-expressing nerves are near αSMA + cells in the periosteum. In vitro experiments revealed that periosteal cells express Calcrl and receptor activity modifying protein 1; and CGRP stimulation increased periosteal cell proliferation. Using a tamoxifen-inducible model αSMACre/CLRfl/fl , we targeted the deletion of CLR to periosteal progenitor cells and examined fracture healing. Microcomputed tomography of fractured femurs showed a reduction in bone mass in αSMACre+/CLRfl/fl female mice relative to controls and callus volume in males. Pharmacological CGRP-CLR inhibition was achieved by subcutaneous delivery of customized pellets with small molecule inhibitor olcegepant (BIBN-4096) at a dose of 10 µg/day. BIBN-4096-treated C57BL/6J mice had a higher latency toward thermal nociception than placebo-treated mice, indicating impaired sensory function through CGRP inhibition. CGRP inhibition also resulted in reduced callus volume, bone mass, and bone strength compared to placebo controls. These results indicate that inhibiting CGRP by deleting CLR or by using BIBN-4096, contributes to delayed bone healing.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Calcitonina , Masculino , Camundongos , Feminino , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Consolidação da Fratura , Microtomografia por Raio-X , Camundongos Endogâmicos C57BL , Dor , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/genética , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo
2.
Clin Exp Dent Res ; 8(5): 1158-1166, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35700066

RESUMO

OBJECTIVES: The goal of this project was to evaluate the role of calcitonin gene-related peptide (CGRP) in the development of arthritis. METHODS: Herein, we employed somatic mosaic analysis in two different joints by FIV(CGRP) intra-articular inoculation in the knees or temporomandibular joints (TMJ) of young adult male C57/BL6 mice. FIV(CGRP) is a feline immunodeficiency virus over-expressing full-length CGRP. Joint pathology and function were evaluated at the histopathological and behavioral levels. In addition, CGRP signaling was inhibited by intra-articular inoculation using FIV(CGRP8-37 ), such that the inhibitory peptide CGRP(8-37) was overexpressed 4 weeks after induction of joint inflammation in the TMJ of IL-1ßXAT transgenic mouse model. The mice were evaluated for behavior and killed for evaluation of knee and TMJ pathology. RESULTS: Overexpression of CGRP in the joints of wild-type mice induced the development of joint anomalies, including meniscal hypertrophy and articular pathology, associated with nocifensive behavior. Intriguingly, overexpression of the CGRP(8-37) inhibitory peptide in the knee and TMJ of IL-1ßXAT transgenic mice with joint inflammation resulted in partial amelioration of the attendant joint pathology. CONCLUSIONS: The results of this study suggest that CGRP is sufficient and necessary for the development of joint pathology and may serve as an intra-articular therapeutic target using gene therapy or monoclonal antibody-based therapies.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos da Articulação Temporomandibular , Animais , Anticorpos Monoclonais , Peptídeo Relacionado com Gene de Calcitonina/genética , Inflamação , Masculino , Camundongos , Camundongos Transgênicos , Articulação Temporomandibular , Transtornos da Articulação Temporomandibular/tratamento farmacológico , Transtornos da Articulação Temporomandibular/genética , Transtornos da Articulação Temporomandibular/patologia
3.
Biochim Biophys Acta Biomembr ; 1862(3): 183174, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31887275

RESUMO

Receptor component protein (RCP) is a 148 amino acid intracellular peripheral membrane protein, previously identified as promoting the coupling of CGRP to cAMP production at the CGRP receptor, a heterodimer of calcitonin receptor like-receptor (CLR), a family B G protein-coupled receptor (GPCR) and receptor activity modifying protein 1 (RAMP1). We extend these observations to show that it selectively enhances CGRP receptor coupling to Gs but not Gq or pERK activation. At other family B GPCRs, it enhances cAMP production at the calcitonin, corticotrophin releasing factor type 1a and glucagon-like peptide type 2 receptors with their cognate ligands but not at the adrenomedullin type 1 (AM1), gastric inhibitory peptide and glucagon-like peptide type 1 receptors, all expressed in transfected HEK293S cells. However, there is also cell-line variability as RCP did not enhance cAMP production at the endogenous calcitonin receptor in HEK293T cells and it has previously been reported that it is active on the AM1 receptor expressed on NIH3T3 cells. RCP appears to behave as a positive allosteric modulator at coupling a number of family B GPCRs to Gs, albeit in a manner that is regulated by cell-specific factors. It may exert its effects at the interface between the 2nd intracellular loop of the GPCR and Gs, although there is likely to be some overlap between this location and that occupied by the C-terminus of RAMPs if they bind to the GPCRs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Adrenomedulina/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina , Proteína Semelhante a Receptor de Calcitonina/química , Proteína Semelhante a Receptor de Calcitonina/metabolismo , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Ligantes , Hormônios Peptídicos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
4.
Physiol Rep ; 4(14)2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27440744

RESUMO

In adult animals, the neuropeptide calcitonin gene-related peptide (CGRP) is contained in cochlear efferent fibers projecting out to the cochlea, and contributes to increased suprathreshold sound-evoked activity in the adult auditory nerve. Similarly, CGRP applied to the lateral-line organ (hair cell organ) increases afferent nerve activity in adult frogs (post-metamorphic day 30), yet this increase is developmentally delayed from post-metamorphic day 4-30. In this study, we discovered that there was also a developmental delay in increased suprathreshold sound-evoked activity auditory nerve between juvenile and adult mice similar to what had been observed previously in frog. Moreover, juvenile mice with a targeted deletion of the αCGRP gene [CGRP null (-/-)] did not show a similar developmental increase in nerve activity, suggesting CGRP signaling is involved. This developmental delay is not due to a delay in CGRP expression, but instead is due to a delay in receptor formation. We observed that the increase in sound-evoked nerve activity is correlated with increased formation of cochlear CGRP receptors, which require three complexed proteins (CLR, RAMP1, RCP) to be functional. CGRP receptor formation in the cochlea was incomplete at 1 month of age (juvenile), but complete by 3 months (adult), which corresponded to the onset of suprathreshold enhancement of sound-evoked activity in wild-type animals. Taken together, these data support a model for cochlear function that is enhanced by maturation of CGRP receptor complexes.


Assuntos
Limiar Auditivo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Cóclea/inervação , Nervo Coclear/metabolismo , Potenciais Evocados Auditivos do Tronco Encefálico , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Estimulação Acústica , Fatores Etários , Animais , Peptídeo Relacionado com Gene de Calcitonina/deficiência , Peptídeo Relacionado com Gene de Calcitonina/genética , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Cóclea/crescimento & desenvolvimento , Cóclea/metabolismo , Nervo Coclear/crescimento & desenvolvimento , Genótipo , Camundongos da Linhagem 129 , Camundongos Knockout , Complexos Multiproteicos , Fenótipo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo
5.
Small ; 12(22): 3014-20, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27059518

RESUMO

Introducing nucleic acids into mammalian cells is a crucial step to elucidate biochemical pathways, and to modify gene expression and cellular development in immortalized cells, primary cells, and stem cells. Current transfection technologies are time consuming and limited by the size of genetic cargo, the inefficient introduction of test molecules into large populations of target cells, and the cytotoxicity of the techniques. A novel method of introducing genes and biomolecules into tens of thousands of mammalian cells has been developed through an array of aligned hollow carbon nanotubes, manufactured by template-based nanofabrication processes, to achieve rapid high-efficiency transfer with low cytotoxicity. The utilization of carbon nanotube arrays for gene transfection overcomes molecular weight limits of current technologies and can be adapted to deliver drugs or proteins in addition to nucleic acids.


Assuntos
Nanotubos de Carbono/química , Plasmídeos/genética , Transfecção/métodos , Animais , Técnicas de Transferência de Genes , Humanos , Plasmídeos/química
6.
BMC Cancer ; 14: 598, 2014 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-25129445

RESUMO

BACKGROUND: Despite advances in the treatment of primary breast tumors, the outcome of metastatic breast cancer remains dismal. Brain metastases present a particularly difficult therapeutic target due to the "sanctuary" status of the brain, with resulting inability of most chemotherapeutic agents to effectively eliminate cancer cells in the brain parenchyma. A large number of breast cancer patients receive various neuroactive drugs to combat complications of systemic anti-tumor therapies and to treat concomitant diseases. One of the most prescribed groups of neuroactive medications is anti-depressants, in particular selective serotonin reuptake inhibitors (SSRIs). Since SSRIs have profound effects on the brain, it is possible that their use in breast cancer patients could affect the development of brain metastases. This would provide important insight into the mechanisms underlying brain metastasis. Surprisingly, this possibility has been poorly explored. METHODS: We studied the effect of fluoxetine, an SSRI, on the development of brain metastatic breast cancer using MDA-MB-231BR cells in a mouse model. RESULTS: The data demonstrate that fluoxetine treatment increases the number of brain metastases, an effect accompanied by elevated permeability of the blood-brain barrier, pro-inflammatory changes in the brain, and glial activation. This suggests a possible role of brain-resident immune cells and glia in promoting increased development of brain metastases. CONCLUSION: Our results offer experimental evidence that neuroactive substances may influence the pathogenesis of brain metastatic disease. This provides a starting point for further investigations into possible mechanisms of interaction between various neuroactive drugs, tumor cells, and the brain microenvironment, which may lead to the discovery of compounds that inhibit metastasis to the brain.


Assuntos
Barreira Hematoencefálica/patologia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Fluoxetina/administração & dosagem , Fluoxetina/toxicidade , Animais , Neoplasias Encefálicas/sangue , Neoplasias da Mama/sangue , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Espinhas Dendríticas/patologia , Feminino , Fluoxetina/farmacocinética , Humanos , Camundongos , Transplante de Neoplasias , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Neuroimmunol ; 271(1-2): 18-29, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24746422

RESUMO

Calcitonin Gene-Related Peptide (CGRP) inhibits microglia inflammatory activation in vitro. We here analyzed the involvement of CGRP and Receptor Component Protein (RCP) in experimental autoimmune encephalomyelitis (EAE). Alpha-CGRP deficiency increased EAE scores which followed the scale alpha-CGRP null>heterozygote>wild type. In wild type mice, CGRP delivery into the cerebrospinal fluid (CSF) 1) reduced chronic EAE (C-EAE) signs, 2) inhibited microglia activation (revealed by quantitative shape analysis), and 3) did not alter GFAP expression, cell density, lymphocyte infiltration, and peripheral lymphocyte production of IFN-gamma, TNF-alpha, IL-17, IL-2, and IL-4. RCP (probe for receptor involvement) was expressed in white matter microglia, astrocytes, oligodendrocytes, and vascular-endothelial cells: in EAE, also in infiltrating lymphocytes. In relapsing-remitting EAE (R-EAE) RCP increased during relapse, without correlation with lymphocyte density. RCP nuclear localization (stimulated by CGRP in vitro) was I) increased in microglia and decreased in astrocytes (R-EAE), and II) increased in microglia by CGRP CSF delivery (C-EAE). Calcitonin like receptor was rarely localized in nuclei of control and relapse mice. CGRP increased in motoneurons. In conclusion, CGRP can inhibit microglia activation in vivo in EAE. CGRP and its receptor may represent novel protective factors in EAE, apparently acting through the differential cell-specific intracellular translocation of RCP.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Regulação da Expressão Gênica/fisiologia , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Adrenomedulina/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/uso terapêutico , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/genética , Inibidores Enzimáticos/farmacologia , Adjuvante de Freund/imunologia , Adjuvante de Freund/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Glicoproteína Mielina-Oligodendrócito/imunologia , Glicoproteína Mielina-Oligodendrócito/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/farmacologia , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/genética
8.
Curr Protein Pept Sci ; 14(5): 407-15, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23745704

RESUMO

The receptor for calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) requires an intracellular peripheral membrane protein named CGRP-receptor component protein (RCP) for signaling. RCP is required for CGRP and AM receptor signaling, and it has recently been discovered that RCP enables signaling by binding directly to the receptor. RCP is present in most immortalized cell lines, but in vivo RCP expression is limited to specific subsets of cells, usually co-localizing with CGRP-containing neurons. RCP protein expression correlates with CGRP efficacy in vivo, suggesting that RCP regulates CGRP signaling in vivo as it does in cell culture. RCP is usually identified in cytoplasm or membranes of cells, but recently has been observed in nucleus of neurons, suggesting an additional transcriptional role for RCP in cell function. Together, these data support an essential role for RCP in CGRP and AM receptor function, in which RCP expression enhances signaling of the CGRP or AM receptor, and therefore increases the efficacy of CGRP and AM in vivo.


Assuntos
Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Alinhamento de Sequência , Transdução de Sinais
9.
Endocrinology ; 153(4): 1850-60, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22315449

RESUMO

Calcitonin gene-related peptide (CGRP) is a neuropeptide with multiple neuroendocrine roles, including vasodilation, migraine, and pain. The receptor for CGRP is a G protein-coupled receptor (GPCR) that requires three proteins for function. CGRP binds to a heterodimer composed of the GPCR calcitonin-like receptor (CLR) and receptor activity-modifying protein (RAMP1), a single transmembrane protein required for pharmacological specificity and trafficking of the CLR/RAMP1 complex to the cell surface. In addition, the CLR/RAMP1 complex requires a third protein named CGRP-receptor component protein (RCP) for signaling. Previous studies have demonstrated that depletion of RCP from cells inhibits CLR signaling, and in vivo studies have demonstrated that expression of RCP correlates with CLR signaling and CGRP efficacy. It is not known whether RCP interacts directly with CLR to exert its effect. The current studies identified a direct interaction between RCP and an intracellular domain of CLR using yeast two-hybrid analysis and coimmunoprecipitation. When this interacting domain of CLR was expressed as a soluble fusion protein, it coimmunoprecipitated with RCP and inhibited signaling from endogenous CLR. Expression of this dominant-negative domain of CLR did not significantly inhibit trafficking of CLR to the cell surface, and thus RCP may not have a chaperone function for CLR. Instead, RCP may regulate CLR signaling in the cell membrane, and direct interaction between RCP and CLR is required for CLR activation. To date, RCP has been found to interact only with CLR and represents a novel neuroendocrine regulatory step in GPCR signaling.


Assuntos
Proteína Semelhante a Receptor de Calcitonina/fisiologia , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/fisiologia , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Proteínas de Fluorescência Verde , Camundongos , Modelos Animais , Células NIH 3T3 , Estrutura Terciária de Proteína/fisiologia , Proteína 1 Modificadora da Atividade de Receptores/fisiologia , Proteínas Recombinantes de Fusão
10.
Am J Physiol Heart Circ Physiol ; 301(3): H683-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21666123

RESUMO

In subtotal nephrectomy (SN)- and salt-induced hypertension, calcitonin gene-related peptide (CGRP) plays a compensatory role to attenuate the blood pressure increase in the absence of an increase in the neuronal synthesis and release of this peptide. Therefore, the purpose of this study was to determine whether the mechanism of this antihypertensive activity is through enhanced sensitivity of the vasculature to the dilator actions of this neuropeptide. Hypertension was induced in Sprague-Dawley rats by SN and 1% saline drinking water. Control rats were sham-operated and given tap water to drink. After 11 days, rats had intravenous (drug administration) and arterial (continuous mean arterial pressure recording) catheters surgically placed and were studied in a conscious unrestrained state. Baseline mean arterial pressure was higher in the SN-salt rats (157 ± 5 mmHg) compared with controls (128 ± 3 mmHg). Administration of CGRP (and adrenomedullin) produced a significantly greater dose-dependent decrease in mean arterial pressure in SN-salt rats compared with controls (∼2.0-fold for both the low and high doses). Interestingly, isolated superior mesenteric arterioles from SN-salt rats were significantly more responsive to the dilator effects of CGRP (but not adenomedullin) than the controls (pEC(50), SN-salt, 14.0 ± 0.1 vs. control, 12.0 ± 0.1). Analysis of the CGRP receptor proteins showed that only the receptor component protein was increased significantly in arterioles from SN-salt rats. These data indicate that the compensatory antihypertensive effects of CGRP result from an increased sensitivity of the vasculature to dilator activity of this peptide. The mechanism may be via the upregulation of receptor component protein, thereby providing a more efficient coupling of the receptor to the signal transduction pathways.


Assuntos
Anti-Hipertensivos/administração & dosagem , Peptídeo Relacionado com Gene de Calcitonina/administração & dosagem , Hipertensão/tratamento farmacológico , Mesentério/irrigação sanguínea , Nefrectomia , Cloreto de Sódio na Dieta , Vasodilatação/efeitos dos fármacos , Vasodilatadores/administração & dosagem , Adrenomedulina/administração & dosagem , Análise de Variância , Animais , Arteríolas/efeitos dos fármacos , Arteríolas/metabolismo , Arteríolas/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Western Blotting , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hipertensão/etiologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Infusões Intravenosas , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/agonistas , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Fatores de Tempo
11.
Eur J Neurosci ; 28(11): 2213-20, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19046367

RESUMO

The neuropeptide calcitonin gene-related peptide (CGRP) is transiently expressed in cerebellar climbing fibers during development while its receptor is mainly expressed in astrocytes, in particular Bergmann glial cells. Here, we analyzed the effects of CGRP on astrocytic calcium signaling. Mouse cultured astrocytes from cerebellar or cerebral cortex as well as Bergmann glial cells from acutely isolated cerebellar slices were loaded with the Ca(2+) sensor Fura-2. CGRP triggered transient increases in intracellular Ca(2+) in astrocytes in culture as well as in acute slices. Responses were observed in the concentration range of 1 nm to 1 mm, in both the cell body and its processes. The calcium transients were dependent on release from intracellular stores as they were blocked by thapsigargin but not by the absence of extracellular calcium. In addition, after CGRP application a further delayed transient increase in calcium activity could be observed. Finally, cerebellar astrocytes from neonatal mice expressed receptor component protein, a component of the CGRP receptor, as revealed by immunofluorescence and confocal microscopy. It is thus proposed that the CGRP-containing afferent fibers in the cerebellum (the climbing fibers) modulate calcium in astrocytes by releasing the neuropeptide during development and hence possibly influence the differentiation of Purkinje cells.


Assuntos
Astrócitos/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Cerebelo/metabolismo , Neuroglia/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Fura-2 , Indicadores e Reagentes , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Neuroglia/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/efeitos dos fármacos , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Tapsigargina/farmacologia
12.
Lab Invest ; 87(9): 914-26, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17618297

RESUMO

The role of sensory innervation in the regulation of liver physiology and the pathogenesis of cholestatic liver disease are undefined. Biliary proliferation has been shown to be coordinately controlled by parasympathetic and sympathetic innervation of the liver. The aim of our study was to address the role of the sensory neuropeptide calcitonin gene-related peptide (alpha-CGRP) in the regulation of cholangiocyte proliferation during cholestasis induced by extrahepatic bile duct obstruction (BDL). Our study utilized a knockout (KO) mouse model, which lacks the sensory neuropeptide alpha-CGRP. Wild-type (WT) and alpha-CGRP KO mice were subjected to sham surgery or BDL for 3 and 7 days. In addition, immediately after BDL, WT and KO mice were administered the CGRP receptor antagonist (CGRP(8-37)) for 3 and 7 days by osmotic minipumps. Liver sections and isolated cholangiocytes were evaluated for proliferation markers. Isolated WT BDL (3 days) cholangiocytes were stimulated with alpha- and beta-CGRP and evaluated for proliferation and cAMP-mediated signaling. Lack of alpha-CGRP inhibits cholangiocyte proliferation induced by BDL at both 3 and 7 days. BDL-induced cholangiocyte proliferation in WT mice was associated with increases of circulating alpha-CGRP levels. In vitro, alpha- and beta-CGRP stimulated proliferation in purified BDL cholangiocytes, induced elevation of cAMP levels, and stimulated the activation of cAMP-dependent protein kinase A and cAMP response element binding protein DNA binding. In conclusion, sensory innervation of the liver and biliary expression of alpha-CGRP play an important role in the regulation of cholangiocyte proliferation during cholestasis.


Assuntos
Ductos Biliares Intra-Hepáticos/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Colangite/fisiopatologia , Colestase Extra-Hepática/fisiopatologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Animais , Ductos Biliares Intra-Hepáticos/patologia , Ductos Biliares Intra-Hepáticos/fisiopatologia , Sistema Biliar/citologia , Peptídeo Relacionado com Gene de Calcitonina/sangue , Proliferação de Células , Colangite/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Knockout
13.
Protein Expr Purif ; 52(1): 167-74, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17067815

RESUMO

Calcitonin gene-related peptide (CGRP) is a neuropeptide secreted by the central and peripheral nervous system nerves that has important physiological functions such as vasodilation, cardiotonic actions, metabolic and pro-inflammatory effects. The CGRP receptor is unique among G-protein coupled receptors in that a functional CGRP receptor consists of at least three proteins: calcitonin like receptor (CLR), receptor activity modifying protein (RAMP1) and receptor component protein (RCP). RCP is a required factor in CGRP-mediated signal transduction and it couples the CGRP receptor to the signal transduction pathway. Here, we describe methods to overexpress and purify RCP for structure-function studies. Human RCP was cloned and overexpressed with a poly-histidine tag and as a maltose binding protein (MBP) fusion in Escherichia coli using commercially available expression vectors. While His tagged RCP is prone to aggregation, solubility is improved when RCP is expressed as a MBP fusion. Expression and purification procedures for these constructs are described. Results from these studies will facilitate structural analysis of human RCP, and allow further understanding of RCP function.


Assuntos
Receptores de Peptídeo Relacionado com o Gene de Calcitonina/genética , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Clonagem Molecular , Sequência Conservada , Escherichia coli/genética , Humanos , Dados de Sequência Molecular , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
14.
Arthritis Rheum ; 54(4): 1184-97, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16572453

RESUMO

OBJECTIVE: To examine the effects of intraarticular induction of interleukin-1beta (IL-1beta) expression in adult mice. METHODS: We used somatic mosaic analysis in a novel transgenic mouse with an inducible IL-1beta transcription unit. Transgene activation was induced by Cre recombinase in the temporomandibular joints (TMJs) of adult transgenic mice (conditional knockin model). The effects of intraarticular IL-1beta induction were subsequently evaluated at the cellular, histopathologic, and behavioral levels. RESULTS: We developed transgenic mice capable of germline transmission of a dormant transcription unit consisting of the mature form of human IL-1beta as well as the reporter gene beta-galactosidase driven by the rat procollagen 1A1 promoter. Transgene activation by a feline immunodeficiency virus Cre vector resulted in histopathologic changes, including articular surface fibrillations, cartilage remodeling, and chondrocyte cloning. We also demonstrated up-regulation of genes implicated in arthritis (cyclooxygenase 2, IL-6, matrix metalloproteinase 9). There was a lack of inflammatory cells in these joints. Behavioral changes, including increased orofacial grooming and decreased resistance to mouth opening, were used as measures of nociception and joint dysfunction, respectively. The significant increase in expression of the pain-related neurotransmitter calcitonin gene-related peptide (CGRP) in the sensory ganglia as well as the auxiliary protein CGRP receptor component protein of the calcitonin-like receptor in the brainstem further substantiated the induction of pain. CONCLUSION: Induction of IL-1beta expression in the TMJs of adult mice led to pathologic development, dysfunction, and related pain in the joints. The somatic mosaic model presented herein may prove useful in the preclinical evaluation of existing and new treatments for the management of joint pathologic changes and pain, such as in osteoarthritis.


Assuntos
Interleucina-1/biossíntese , Dor/etiologia , Transtornos da Articulação Temporomandibular/etiologia , Animais , Cartilagem Articular/patologia , Integrases/fisiologia , Interleucina-1/genética , Camundongos , Camundongos Transgênicos , Transtornos da Articulação Temporomandibular/patologia , Transtornos da Articulação Temporomandibular/fisiopatologia
15.
Endocrinology ; 147(4): 1932-40, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16373421

RESUMO

The neuropeptide calcitonin gene-related peptide (CGRP) is a potent vasodilator that plays a protective role in the cardiovascular system. The receptor for CGRP is an unusual complex of the G protein-coupled calcitonin-like receptor and an obligate receptor activity modifying protein-1 (RAMP1). In this report we provide the first evidence that RAMP1 is rate limiting in vascular smooth muscle cells. Although cultured rat aorta smooth muscle cells express calcitonin like-receptor and RAMP1, we found that CGRP is not a potent activator of the receptor. After overexpression of RAMP1 by adenoviral gene transfer, there was a striking increase in CGRP-induced production of cAMP, with a 75-fold decrease in the EC(50) and a 1.5-fold increase in the maximal response. The biological consequence of this increased receptor activity was observed in three different paradigms. First, RAMP1 gene transfer caused a CGRP-dependent decrease in cell proliferation. Second, RAMP1 and CGRP treatment led to a 3-fold greater free radical-induced reduction in cell number. Finally, RAMP1 gene transfer resulted in a 5-fold CGRP-dependent increase in terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling-positive apoptotic cells upon serum withdrawal. The mechanisms underlying these effects involved cAMP-dependent pathways. We propose that RAMP1 gene transfer may be an effective strategy for increasing the effectiveness of CGRP-induced decrease in restenosis after aortic angioplasty.


Assuntos
Terapia Genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/fisiologia , Adenoviridae/genética , Animais , Apoptose , Proteína Semelhante a Receptor de Calcitonina , Proliferação de Células , Células Cultivadas , AMP Cíclico/biossíntese , Transferência Genética Horizontal , Humanos , Masculino , Músculo Liso Vascular/citologia , Ratos , Ratos Sprague-Dawley , Proteína 1 Modificadora da Atividade de Receptores , Proteínas Modificadoras da Atividade de Receptores , Receptores da Calcitonina/fisiologia
16.
J Biol Chem ; 278(27): 24994-5000, 2003 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-12707285

RESUMO

The calcitonin gene-related peptide (CGRP) is released by motor neurons where it exerts both short and long term effects on skeletal muscle fibers. In addition, sensory neurons release CGRP on the surrounding vasculature where it is in part responsible for local vasodilation following muscle contraction. Although CGRP-binding sites have been demonstrated in whole muscle tissue, the type of CGRP receptor and its associated proteins or its cellular localization within the tissue have not been described. Here we show that the CGRP-binding protein referred to as the calcitonin receptor-like receptor is highly concentrated at the avian neuromuscular junction together with its two accessory proteins, receptor activity modifying protein 1 and CGRP-receptor component protein, required for ligand specificity and signal transduction. Using tissue-cultured skeletal muscle we show that CGRP stimulates an increase in intracellular cAMP that in turn initiates down-regulation of acetylcholinesterase expression at the transcriptional level, and, more specifically, inhibits expression of the synaptically localized collagen-tailed form of the enzyme. Together, these studies suggest a specific role for CGRP released by spinal cord motoneurons in modulating synaptic transmission at the neuromuscular junction by locally inhibiting the expression of acetylcholinesterase, the enzyme responsible for terminating acetylcholine neurotransmission.


Assuntos
Acetilcolinesterase/biossíntese , Junção Neuromuscular/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Acetilcolinesterase/genética , Animais , Células Cultivadas , Regulação Enzimológica da Expressão Gênica , Codorniz , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/genética , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...