Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 214(Pt 9): 1498-512, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21490258

RESUMO

The chemosensory signal structure governing the upstream progress of blue crabs to an odorant source was examined. We used a three-dimensional laser-induced fluorescence system to collect chemical concentration data simultaneously with behavior observations of actively tracking blue crabs (Callinectes sapidus) in a variety of plume types. This allowed us to directly link chemical signal properties at the antennules and legs to subsequent upstream motion while altering the spatial and temporal intermittency characteristics of the sensory field. Our results suggest that odorant stimuli elicit responses in a binary fashion by causing upstream motion, provided the concentration at the antennules exceeds a specific threshold. In particular, we observed a significant association between crab velocity changes and odorant spike encounters defined using a threshold that is scaled to the mean of the instantaneous maximum concentration. Thresholds were different for each crab, indicating a context-sensitive response to signal dynamics. Our data also indicate that high frequency of odorant spike encounters terminate upstream movement. Further, the data provide evidence that the previous state of the crab and prior stimulus history influence the behavioral response (i.e. the response is context dependent). Two examples are: (1) crabs receiving prior odorant spikes attained elevated velocity more quickly in response to subsequent spikes; and (2) prior acceleration or deceleration of the crab influenced the response time period to a particular odorant spike. Finally, information from both leg and antennule chemosensors interact, suggesting parallel processing of odorant spike properties during navigation.


Assuntos
Braquiúros/fisiologia , Locomoção/fisiologia , Odorantes , Rios , Animais , Antenas de Artrópodes/fisiologia , Reologia , Limiar Sensorial/fisiologia , Fatores de Tempo
2.
J Exp Biol ; 214(Pt 9): 1513-22, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21490259

RESUMO

This study examined the role of broadly distributed sensor populations in chemosensory searching, especially cross-stream heading adjustment. We used three-dimensional laser-induced fluorescence to collect chemical concentration data simultaneously with behavior observations of actively tracking blue crabs (Callinectes sapidus). Our analysis indicates that the spatial distribution of the odorant concentration field is necessary and sufficient to mediate correct cross-stream motion, although concentration provides information that supplements that obtained from the spatial distribution. Crab movement is continually adjusted to maintain an upstream heading, with corrections toward the source modulated only in the presence of chemical cues. Crabs detect and respond to shifts in the position of the center-of-mass (COM) of the odorant concentration distribution as small as 5% of the leg span, which corresponds to ∼0.8-0.9 cm. The reaction time after a 5% threshold shift in the position of the COM is in the range of 2-4 s. Data also indicate that these steering responses are dependent on stimulus history or other characteristics of the plume, with crabs taking longer to respond in conditions with large-scale spatial meanders. Although cross-stream motion is determined by chemical signal inputs to receptors on the walking legs, crabs do make rotational movements in response to chemical signals impinging on the antennules. These rotational movements do not affect the direction of travel, but rather, determine the crab's body angle with respect to the flow. Interestingly, these body angles seem to represent a compromise between reducing drag and obtaining better chemical signal information, and this trade-off is resolved differently under different plume conditions.


Assuntos
Braquiúros/fisiologia , Locomoção/fisiologia , Odorantes , Rios , Movimentos da Água , Animais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...