Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Metab ; 140(3): 107668, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37549443

RESUMO

Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD) is a relatively common inborn error of metabolism, but due to difficulty in accurately predicting affected status through newborn screening, molecular confirmation of the causative variants by sequencing of the ACADVL gene is necessary. Although the ACMG/AMP guidelines have helped standardize variant classification, ACADVL variant classification remains disparate due to a phenotype that can be nonspecific, the possibility of variants that produce late-onset disease, and relatively high carrier frequency, amongst other challenges. Therefore, an ACADVL-specific variant curation expert panel (VCEP) was created to facilitate the specification of the ACMG/AMP guidelines for VLCADD. We expect these guidelines to help streamline, increase concordance, and expedite the classification of ACADVL variants.


Assuntos
Erros Inatos do Metabolismo Lipídico , Doenças Mitocondriais , Doenças Musculares , Humanos , Recém-Nascido , Acil-CoA Desidrogenase de Cadeia Longa/genética , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Testes Genéticos , Variação Genética , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Doenças Mitocondriais/genética , Doenças Musculares/genética
2.
Biochim Biophys Acta ; 1829(6-7): 695-707, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23328451

RESUMO

The CELF family of RNA-binding proteins regulates many steps of mRNA metabolism. Although their best characterized function is in pre-mRNA splice site choice, CELF family members are also powerful modulators of mRNA decay. In this review we focus on the different modes of regulation that CELF proteins employ to mediate mRNA decay by binding to GU-rich elements. After starting with an overview of the importance of CELF proteins during development and disease pathogenesis, we then review the mRNA networks and cellular pathways these proteins regulate and the mechanisms by which they influence mRNA decay. Finally, we discuss how CELF protein activity is modulated during development and in response to cellular signals. We conclude by highlighting the priorities for new experiments in this field. This article is part of a Special Issue entitled: RNA Decay mechanisms.


Assuntos
Proteína delta de Ligação ao Facilitador CCAAT , Precursores de RNA/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , Processamento Alternativo , Animais , Proteína delta de Ligação ao Facilitador CCAAT/química , Proteína delta de Ligação ao Facilitador CCAAT/genética , Drosophila/genética , Exorribonucleases/genética , Humanos , Processamento de Proteína Pós-Traducional/genética , Precursores de RNA/química
3.
J Biol Chem ; 287(43): 36229-38, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22915590

RESUMO

We have demonstrated previously that the cellular HuR protein binds U-rich elements in the 3' untranslated region (UTR) of Sindbis virus RNA and relocalizes from the nucleus to the cytoplasm upon Sindbis virus infection in 293T cells. In this study, we show that two alphaviruses, Ross River virus and Chikungunya virus, lack the conserved high-affinity U-rich HuR binding element in their 3' UTRs but still maintain the ability to interact with HuR with nanomolar affinities through alternative binding elements. The relocalization of HuR protein occurs during Sindbis infection of multiple mammalian cell types as well as during infections with three other alphaviruses. Interestingly, the relocalization of HuR is not a general cellular reaction to viral infection, as HuR protein remained largely nuclear during infections with dengue and measles virus. Relocalization of HuR in a Sindbis infection required viral gene expression, was independent of the presence of a high-affinity U-rich HuR binding site in the 3' UTR of the virus, and was associated with an alteration in the phosphorylation state of HuR. Sindbis virus-induced HuR relocalization was mechanistically distinct from the movement of HuR observed during a cellular stress response, as there was no accumulation of caspase-mediated HuR cleavage products. Collectively, these data indicate that virus-induced HuR relocalization to the cytoplasm is specific to alphavirus infections and is associated with distinct posttranslational modifications of this RNA-binding protein.


Assuntos
Infecções por Alphavirus/metabolismo , Alphavirus/metabolismo , Citoplasma/metabolismo , Proteínas ELAV/metabolismo , Processamento de Proteína Pós-Traducional , Regiões 3' não Traduzidas/fisiologia , Alphavirus/genética , Infecções por Alphavirus/genética , Animais , Caspases/genética , Caspases/metabolismo , Chlorocebus aethiops , Citoplasma/genética , Citoplasma/virologia , Proteínas ELAV/genética , Regulação Viral da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Fosforilação/genética , Transporte Proteico/genética , Proteólise , RNA Viral/genética , RNA Viral/metabolismo , Células Vero
4.
Trends Genet ; 27(7): 286-93, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21640425

RESUMO

Eukaryotic cells have a powerful RNA decay machinery that plays an important and diverse role in regulating both the quantity and the quality of gene expression. Viral RNAs need to successfully navigate around this cellular machinery to initiate and maintain a highly productive infection. Recent work has shown that viruses have developed a variety of strategies to accomplish this, including inherent RNA shields, hijacking host RNA stability factors, incapacitating the host decay machinery and changing the entire landscape of RNA stability in cells using virally encoded nucleases. In addition to maintaining the stability of viral transcripts, these strategies can also contribute to the regulation and complexity of viral gene expression as well as to viral RNA evolution.


Assuntos
Estabilidade de RNA , RNA Viral/genética , Animais , Evolução Molecular , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Transcrição Gênica
5.
Cell Host Microbe ; 8(2): 196-207, 2010 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-20709296

RESUMO

How viral transcripts are protected from the cellular RNA decay machinery and the importance of this protection for the virus are largely unknown. We demonstrate that Sindbis virus, a prototypical single-stranded arthropod-borne alphavirus, uses U-rich 3' UTR sequences in its RNAs to recruit a known regulator of cellular mRNA stability, the HuR protein, during infections of both human and vector mosquito cells. HuR binds viral RNAs with high specificity and affinity. Sindbis virus infection induces the selective movement of HuR out of the mammalian cell nucleus, thereby increasing the available cytoplasmic HuR pool. Finally, knockdown of HuR results in a significant increase in the rate of decay of Sindbis virus RNAs and diminishes viral yields in both human and mosquito cells. These data indicate that Sindbis virus and likely other alphaviruses usurp the HuR protein to avoid the cellular mRNA decay machinery and maintain a highly productive infection.


Assuntos
Infecções por Alphavirus/virologia , Antígenos de Superfície/fisiologia , Proteínas de Ligação a RNA/fisiologia , Sindbis virus/fisiologia , Regiões 3' não Traduzidas/fisiologia , Aedes/virologia , Animais , Antígenos de Superfície/metabolismo , Linhagem Celular , Citoplasma/metabolismo , Citoplasma/virologia , Proteínas ELAV , Proteína Semelhante a ELAV 1 , Interações Hospedeiro-Patógeno , Humanos , Estabilidade de RNA , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sindbis virus/patogenicidade , Replicação Viral
7.
Wiley Interdiscip Rev RNA ; 1(1): 173-92, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21956913

RESUMO

An increasing number of dominantly inherited diseases have now been linked with expansion of short repeats within specific genes. Although some of these expansions affect protein function or result in haploinsufficiency, a significant portion cause pathogenesis through production of toxic RNA molecules that alter cellular metabolism. In this review, we examine the criteria that influence toxicity of these mutant RNAs and discuss new developments in therapeutic approaches.


Assuntos
Expansão das Repetições de DNA/genética , Doença/genética , RNA/genética , RNA/fisiologia , RNA/toxicidade , Animais , Regulação da Expressão Gênica/genética , Terapia Genética/métodos , Humanos , Modelos Biológicos , Mutação/fisiologia , Biossíntese de Proteínas/genética , Sequências Reguladoras de Ácido Ribonucleico/genética , Sequências Reguladoras de Ácido Ribonucleico/fisiologia
8.
Hum Mol Genet ; 18(9): 1600-11, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19228773

RESUMO

Spinal muscular atrophy (SMA) is a motor neuron disease caused by the loss of survival motor neuron-1 (SMN1). A nearly identical copy gene, SMN2, is present in all SMA patients, which produces low levels of functional protein. Although the SMN2 coding sequence has the potential to produce normal, full-length SMN, approximately 90% of SMN2-derived transcripts are alternatively spliced and encode a truncated protein lacking the final coding exon (exon 7). SMN2, however, is an excellent therapeutic target. Previously, we developed bifunctional RNAs that bound SMN exon 7 and modulated SMN2 splicing. To optimize the efficiency of the bifunctional RNAs, a different antisense target was required. To this end, we genetically verified the identity of a putative intronic repressor and developed bifunctional RNAs that target this sequence. Consequently, there is a 2-fold mechanism of SMN induction: inhibition of the intronic repressor and recruitment of SR proteins via the SR recruitment sequence of the bifunctional RNA. The bifunctional RNAs effectively increased SMN in human primary SMA fibroblasts. Lead candidates were synthesized as 2'-O-methyl RNAs and were directly injected in the central nervous system of SMA mice. Single-RNA injections were able to illicit a robust induction of SMN protein in the brain and throughout the spinal column of neonatal SMA mice. In a severe model of SMA, mean life span was extended following the delivery of bifunctional RNAs. This technology has direct implications for the development of an SMA therapy, but also lends itself to a multitude of diseases caused by aberrant pre-mRNA splicing.


Assuntos
Terapia Genética , Íntrons , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/terapia , RNA Antissenso/uso terapêutico , Sequências Reguladoras de Ácido Nucleico , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Atrofia Muscular Espinal/genética , RNA Antissenso/química , RNA Antissenso/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
9.
Biochem Biophys Res Commun ; 375(1): 33-7, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18675250

RESUMO

Gemin4 is a ubiquitously expressed multifunctional protein that is involved in U snRNP assembly, apoptosis, nuclear/cytoplasmic transportation, transcription, and RNAi pathways. Gemin4 is one of the core components of the Gemin-complex, which also contains survival motor neuron (SMN), the seven Gemin proteins (Gemin2-8), and Unrip. Mutations in the SMN1 gene cause the autosomal recessive disorder spinal muscular atrophy (SMA). Although the functions assigned to Gemin4 predominantly occur in the nucleus, the mechanisms that mediate the nuclear import of Gemin4 remain unclear. Here, using a novel panel of Gemin4 constructs we identify a canonical nuclear import sequence (NLS) in the N-terminus of Gemin4. The Gemin4 NLS is necessary and independently sufficient to mediate nuclear import of Gemin4. This is the first functional NLS identified within the SMN-Gemin complex.


Assuntos
Sinais de Localização Nuclear/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Citoplasma/metabolismo , Células HeLa , Humanos , Antígenos de Histocompatibilidade Menor , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Sinais de Localização Nuclear/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Proteínas do Complexo SMN , Proteína 1 de Sobrevivência do Neurônio Motor
10.
Hum Gene Ther ; 19(11): 1307-15, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19848583

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder and is the leading genetic cause of infant mortality. SMA is caused by the loss of survival motor neuron-1 (SMN1). In humans, a nearly identical copy gene is present called SMN2, but this gene cannot compensate for the loss of SMN1 because of a single silent nucleotide difference in SMN2 exon 7. This single-nucleotide difference attenuates an exonic splice enhancer, resulting in the production of an alternatively spliced isoform lacking exon 7, which is essential for protein function. SMN2, however, is a critical disease modifier and is an outstanding target for therapeutic intervention because all SMA patients retain SMN2 and SMN2 maintains the same coding sequence as SMN1. Therefore, compounds or molecules that increase SMN2 exon 7 inclusion hold great promise for SMA therapeutics. Bifunctional RNAs have been previously used to increase SMN protein levels and derive their name from the presence of two domains: an antisense RNA sequence specific to the target RNA and an untethered RNA segment that serves as a binding platform for splicing factors. This study was designed to develop negatively acting bifunctional RNAs that recruit hnRNPA1 to exon 8 and block the general splicing machinery from the exon 8. By blocking the downstream splice site, this could competitively favor the inclusion of SMN exon 7 and therefore increase full-length SMN production. Here we identify a bifunctional RNA that stimulated full-length SMN expression in a variety of cell-based assays including SMA patient fibroblasts. Importantly, this molecule was also able to induce SMN expression in a previously described mouse model of SMA and demonstrates a novel therapeutic approach for SMA as well as a variety of diseases caused by a defect in splicing.


Assuntos
Fibroblastos/metabolismo , Atrofia Muscular Espinal/metabolismo , Splicing de RNA/genética , RNA/genética , Proteína 1 de Sobrevivência do Neurônio Motor/fisiologia , Animais , Animais Recém-Nascidos , Western Blotting , Células Cultivadas , Éxons/genética , Vetores Genéticos , Células HeLa , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Humanos , Técnicas In Vitro , Luciferases , Camundongos , Camundongos Knockout , Atrofia Muscular Espinal/genética , RNA/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/fisiologia
11.
Mol Ther ; 14(1): 54-62, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16580882

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder that is the leading genetic cause of infant mortality. SMA is caused by the loss of survival motor neuron-1 (SMN1). In humans, a nearly identical copy gene is present, called SMN2. SMN2 is retained in all SMA patients and encodes an identical protein compared to SMN1. However, a single silent nucleotide difference in SMN2 exon 7 results in the production of a spliced isoform (called SMNDelta7) that encodes a nonfunctional protein. The presence of SMN2 represents a unique therapeutic target since SMN2 has the capacity to encode a fully functional protein. Here we describe an in vivo delivery system for short bifunctional RNAs that modulate SMN2 splicing. Bifunctional RNAs derive their name from the presence of two domains: an antisense RNA sequence specific to a target RNA and an untethered RNA segment that serves as a binding platform for splicing factors. Plasmid-based and recombinant adeno-associated virus vectors were developed that expressed bifunctional RNAs that stimulated SMN2 exon 7 inclusion and full-length SMN protein in patient fibroblasts. These experiments provide a mechanism to modulate splicing from a variety of genetic contexts and demonstrate directly a novel therapeutic approach for SMA.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Dependovirus/genética , Vetores Genéticos/genética , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/genética , RNA/genética , Western Blotting , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Éxons/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Células HeLa , Humanos , Luciferases/genética , Luciferases/metabolismo , Microscopia de Fluorescência , Modelos Genéticos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Atrofia Muscular Espinal/terapia , Proteínas do Tecido Nervoso/metabolismo , RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas do Complexo SMN , Proteína 1 de Sobrevivência do Neurônio Motor , Proteína 2 de Sobrevivência do Neurônio Motor , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...