Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geobiology ; 21(3): 310-322, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36536606

RESUMO

Nickel and zinc are both bio-essential micronutrients with a nutrient-like distribution in the modern ocean, but show key differences in their biological functions and geochemical behavior. Eukaryotic phytoplankton, and especially diatoms, have high Zn quotas, whereas cyanobacteria generally require relatively more Ni. Secular changes in the relative availability of these micronutrients may, therefore, have affected the evolution and diversification of phytoplankton. In this study, we use a large compilation of Ni and Zn concentration data for Phanerozoic sediments to evaluate long-term changes in Ni and Zn availability and possible links to phytoplankton evolution. Modern data suggest that organic-rich sediments capture the dissolved deep ocean Ni/Zn ratio, regardless of local depositional conditions. We use this observation to constrain Ni/Zn ratios for past oceans, based on data from the sedimentary record. This record highlights long-term changes in the relative availability of these micronutrients that can be linked to the (bio)geochemical conditions on the Earth's surface. Early Palaeozoic oceans were likely relatively Ni rich, with sedimentary Ni/Zn ratios for this interval mostly being around ~1 or higher. A comparison with Phanerozoic strontium-, carbon-, and sulfur-isotopic records suggests that the late Palaeozoic decrease in sulfidic conditions and increase in hydrothermal inputs and organic-carbon burial rates caused a shift towards more Zn-rich conditions. Mesozoic and Cenozoic sediments show relatively Zn-rich oceans for these time intervals, with sedimentary Ni/Zn ratios mostly being around ~1 or lower. These observations imply that the diversification of the dominant groups of modern eukaryotic phytoplankton occurred in relatively Zn-rich oceans and that these organisms still carry this signature in their stoichiometries. However, the Phanerozoic transition to a more Zn-rich ocean pre-dates the origin and diversification of modern eukaryotes and, therefore, this transition was likely not the main direct cause for eukaryotic diversification in the Mesozoic and Cenozoic Eras.


Assuntos
Oligoelementos , Zinco , Níquel , Micronutrientes , Oceanos e Mares , Fitoplâncton , Eucariotos , Carbono
2.
Nat Commun ; 12(1): 399, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452243

RESUMO

The Paleocene Eocene Thermal Maximum (PETM) represents a major carbon cycle and climate perturbation that was associated with ocean de-oxygenation, in a qualitatively similar manner to the more extensive Mesozoic Oceanic Anoxic Events. Although indicators of ocean de-oxygenation are common for the PETM, and linked to biotic turnover, the global extent and temporal progression of de-oxygenation is poorly constrained. Here we present carbonate associated uranium isotope data for the PETM. A lack of resolvable perturbation to the U-cycle during the event suggests a limited expansion of seafloor anoxia on a global scale. We use this result, in conjunction with a biogeochemical model, to set an upper limit on the extent of global seafloor de-oxygenation. The model suggests that the new U isotope data, whilst also being consistent with plausible carbon emission scenarios and observations of carbon cycle recovery, permit a maximum ~10-fold expansion of anoxia, covering <2% of seafloor area.

3.
Sci Rep ; 9(1): 11669, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406148

RESUMO

Oxygen is a prerequisite for all large and motile animals. It is a puzzling paradox that fossils of benthic animals are often found in black shales with geochemical evidence for deposition in marine environments with anoxic and sulfidic bottom waters. It is debated whether the geochemical proxies are unreliable, affected by diagenesis, or whether the fossils are transported from afar or perhaps were not benthic. Here, we improved the stratigraphic resolution of marine anoxia records 100-1000 fold using core-scanning X-Ray Fluorescence and established a centennial resolution record of oxygen availability at the seafloor in an epicontinental sea that existed ~501-494 million years ago. The study reveals that anoxic bottom-water conditions, often with toxic hydrogen sulfide present, were interrupted by brief oxygenation events of 600-3000 years duration, corresponding to 1-5 mm stratigraphic thickness. Fossil shells occur in some of these oxygenated intervals suggesting that animals invaded when conditions permitted an aerobic life style at the seafloor. Although the fauna evidently comprised opportunistic species adapted to low oxygen environments, these findings reconcile a long-standing debate between paleontologists and geochemists, and shows the potential of ultra-high resolution analyses for reconstructing redox conditions in past oceans.


Assuntos
Fósseis/história , Sedimentos Geológicos/análise , Sulfeto de Hidrogênio/história , Oxigênio/história , Água do Mar/análise , Animais , Sedimentos Geológicos/química , História Antiga , Sulfeto de Hidrogênio/química , Oxirredução , Oxigênio/química , Respiração , Água do Mar/química , Espectrometria por Raios X
4.
Nat Commun ; 9(1): 3186, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30093725

RESUMO

The degree to which ocean deoxygenation will alter the function of marine communities remains unclear but may be best constrained by detailed study of intervals of rapid warming in the geologic past. The Paleocene-Eocene Thermal Maximum (PETM) was an interval of rapid warming that was the result of increasing contents of greenhouse gases in the atmosphere that had wide ranging effects on ecosystems globally. Here, we present stable nitrogen isotope data from the Eastern Peri-Tethys Ocean that record a significant transition in the nitrogen cycle. At the initiation of the PETM, the nitrogen isotopic composition of sediments decreased by ~6‰ to as low as -3.4‰, signaling reorganization of the marine nitrogen cycle. Warming, changes in ocean circulation, and deoxygenation caused a transition to nitrogen cycle to conditions that were most similar to those experienced during Oceanic Anoxic Events of the Mesozoic.

5.
Proc Natl Acad Sci U S A ; 115(12): 2918-2923, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507196

RESUMO

Oceanic Anoxic Event 2 (OAE 2), occurring ∼94 million years ago, was one of the most extreme carbon cycle and climatic perturbations of the Phanerozoic Eon. It was typified by a rapid rise in atmospheric CO2, global warming, and marine anoxia, leading to the widespread devastation of marine ecosystems. However, the precise timing and extent to which oceanic anoxic conditions expanded during OAE 2 remains unresolved. We present a record of global ocean redox changes during OAE 2 using a combined geochemical and carbon cycle modeling approach. We utilize a continuous, high-resolution record of uranium isotopes in pelagic and platform carbonate sediments to quantify the global extent of seafloor anoxia during OAE 2. This dataset is then compared with a dynamic model of the coupled global carbon, phosphorus, and uranium cycles to test hypotheses for OAE 2 initiation. This unique approach highlights an intra-OAE complexity that has previously been underconstrained, characterized by two expansions of anoxia separated by an episode of globally significant reoxygenation coincident with the "Plenus Cold Event." Each anoxic expansion event was likely driven by rapid atmospheric CO2 injections from multiphase Large Igneous Province activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...