Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(8): e44066, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952876

RESUMO

Human alveolar macrophages are critical components of the innate immune system. Cigarette smoking-induced changes in alveolar macrophage gene expression are linked to reduced resistance to pulmonary infections and to the development of emphysema/COPD. We hypothesized that microRNAs (miRNAs) could control, in part, the unique messenger RNA (mRNA) expression profiles found in alveolar macrophages of cigarette smokers. Activation of macrophages with different stimuli in vitro leads to a diverse range of M1 (inflammatory) and M2 (anti-inflammatory) polarized phenotypes that are thought to mimic activated macrophages in distinct tissue environments. Microarray mRNA data indicated that smoking promoted an "inverse" M1 mRNA expression program, defined by decreased expression of M1-induced transcripts and increased expression of M1-repressed transcripts with few changes in M2-regulated transcripts. RT-PCR arrays identified altered expression of many miRNAs in alveolar macrophages of smokers and a decrease in global miRNA abundance. Stratification of human subjects suggested that the magnitude of the global decrease in miRNA abundance was associated with smoking history. We found that many of the miRNAs with reduced expression in alveolar macrophages of smokers were predicted to target mRNAs upregulated in alveolar macrophages of smokers. For example, miR-452 is predicted to target the transcript encoding MMP12, an important effector of smoking-related diseases. Experimental antagonism of miR-452 in differentiated monocytic cells resulted in increased expression of MMP12. The comprehensive mRNA and miRNA expression profiles described here provide insight into gene expression regulation that may underlie the adverse effects cigarette smoking has on alveolar macrophages.


Assuntos
Regulação da Expressão Gênica , Macrófagos Alveolares/metabolismo , MicroRNAs/genética , Fumar/efeitos adversos , Fumar/genética , Adulto , Bases de Dados Genéticas , Regulação para Baixo/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , MicroRNAs/metabolismo , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Doadores de Tecidos , Regulação para Cima/genética
2.
J Biol Chem ; 287(26): 21816-25, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22549785

RESUMO

Macrophages respond to external stimuli with rapid changes in expression of many genes. Different combinations of external stimuli lead to distinct polarized activation patterns, resulting in a spectrum of possible macrophage activation phenotypes. MicroRNAs (miRNAs) are small, noncoding RNAs that can repress the expression of many target genes. We hypothesized that miRNAs play a role in macrophage polarization. miRNA expression profiles were determined in monocyte-derived macrophages (MDMs) incubated in conditions causing activation toward M1, M2a, M2b, or M2c phenotypes. One miRNA guide strand and seven miRNA passenger strands were significantly altered. Changes were confirmed in MDMs from six separate donors. The amplitude of miRNA expression changes in MDMs was smaller than described studies of monocytes responding to inflammatory stimuli. Further investigation revealed this correlated with higher basal miRNA expression in MDMs compared with monocytes. The regulation of M1- and M2b-responsive miRNAs (miR-27a, miR-29b, miR-125a, miR-146a, miR-155, and miR-222) was similar in differentiated THP-1 cells and primary MDMs. Studies in this model revealed cross-talk between IFNγ- and LPS-associated pathways regulating miRNA expression. Furthermore, expression of M1-associated transcripts was increased in THP-1 cells transfected with mimics of miR-29b, miR-125a-5p, or miR-155. The apparent inflammatory property of miR-29b and miR-125a-5p can be at least partially explained by repression of TNFAIP3, a negative regulator of NF-κB signaling. Overall, these data suggest miRNAs can contribute to changes in macrophage gene expression that occur in different exogenous activating conditions.


Assuntos
Regulação Neoplásica da Expressão Gênica , Macrófagos/citologia , MicroRNAs/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Citocinas/metabolismo , Células HEK293 , Humanos , Inflamação , Interferon gama/metabolismo , Leucócitos/citologia , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Fenótipo
3.
Nucleic Acids Res ; 37(7): 2313-26, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19244309

RESUMO

Replication protein A (RPA) is a heterotrimeric (70, 32 and 14 kDa subunits), single-stranded DNA-binding protein required for cellular DNA metabolism. All subunits of RPA are essential for life, but the specific functions of the 32 and 14 kDa subunits remains unknown. The 32 kDa subunit (RPA2) has multiple domains, but only the central DNA-binding domain (called DBD D) is essential for life in Saccharomyces cerevisiae. To define the essential function(s) of RPA2 in S. cerevisiae, a series of site-directed mutant forms of DBD D were generated. These mutant constructs were then characterized in vitro and in vivo. The mutations had minimal effects on the overall structure and activity of the RPA complex. However, several mutants were shown to disrupt crosslinking of RPA2 to DNA and to dramatically lower the DNA-binding affinity of a RPA2-containing subcomplex. When introduced into S. cerevisiae, all DBD D mutants were viable and supported normal growth rates and DNA replication. These findings indicate that RPA2-DNA interactions are not essential for viability and growth in S. cerevisiae. We conclude that DNA-binding activity of RPA2 is dispensable in yeast and that the essential function of DBD D is intra- and/or inter-protein interactions.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteína de Replicação A/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Sequência de Aminoácidos , Replicação do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Proteína de Replicação A/química , Proteína de Replicação A/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Moldes Genéticos , Raios Ultravioleta
4.
Methods Enzymol ; 409: 11-38, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16793393

RESUMO

Replication protein A (RPA) is a heterotrimeric, single-stranded DNA-binding protein. RPA is conserved in all eukaryotes and is essential for DNA replication, DNA repair, and recombination. RPA also plays a role in coordinating DNA metabolism and the cellular response to DNA damage. Assays have been established for many of these reactions. This chapter provides an overview of the methods used for analyzing RPA-DNA interactions, RPA-protein interactions, and functional activities of RPA. Methods are also discussed for visualizing RPA in the cell and analyzing the effects of RPA function on cell cycle progression in mammalian cells.


Assuntos
Proteína de Replicação A/fisiologia , Cromatografia de Afinidade , Reparo do DNA , Replicação do DNA , Ensaio de Imunoadsorção Enzimática , Polarização de Fluorescência , Técnica Indireta de Fluorescência para Anticorpo , Células HeLa , Humanos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteína de Replicação A/isolamento & purificação , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA