Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photoacoustics ; 32: 100529, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37645258

RESUMO

Synchronously Amplified Photoacoustic Image Recovery (SAPhIRe) offers improved background suppression using non-linear properties of modulatable contrast agents. Using SAPhIRe, multiple contrast agents in the same absorption window can be detected independently based on their unique triplet-state lifetimes. Here, we have demonstrated the unmixing of rose bengal and eosin Y signals from solution based on triplet-state lifetime mapping using both fluorescence and photoacoustics. Varying the pump-probe delay enables resolution and recovery of fast-decaying rose bengal and of slowly decaying eosin Y modulated photoacoustic signals, resulting from optically gated triplet state residence. Distinct images were reconstructed within tissue-mimicking phantom using the fitting coefficients of triplet-state lifetimes. Fluorescence was used to screen for modulation prior to photoacoustic imaging. The results suggest that lifetime unmixing can be utilized to simultaneously detect multiple pathologies with overlapping spectra using photoacoustic imaging.

2.
J Phys Chem B ; 127(17): 3861-3869, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37096986

RESUMO

Time-resolved fluorescence anisotropy (FA) uses the fluorophore depolarization rate to report on rotational diffusion, conformation changes, and intermolecular interactions in solution. Although FA is a rapid, sensitive, and nondestructive tool for biomolecular interaction studies, the short (∼ns) fluorescence lifetime of typical dyes largely prevents the application of FA on larger macromolecular species and complexes. By using triplet shelving and recovery of optical excitation, we introduce optically activated delayed fluorescence anisotropy (OADFA) measurements using sequential two-photon excitation, effectively stretching fluorescence anisotropy measurement times from the nanosecond scale to hundreds of microseconds. We demonstrate this scheme for measuring slow depolarization processes of large macromolecular complexes, derive a quantitative rate model, and perform Monte Carlo simulations to describe the depolarization process of OADFA at the molecular level. This setup has great potential to enable future biomacromolecular and colloidal studies.

3.
Cytometry A ; 101(7): 564-576, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35426240

RESUMO

Bacterial bloodstream infections are a significant cause of global morbidity and mortality. Constrained by low bacterial burdens of 1-100 colony-forming-units per ml blood (CFU/ml), clinical diagnosis relies on lengthy culture amplification and isolation steps prior to identification and antibiotic susceptibility testing (AST). The resulting >60-h time to actionable treatment not only negatively impacts patient outcomes, but also increases the misuse and overuse of broad-spectrum antibiotics that accelerates the rise in multidrug resistant infections. Consequently, the development of novel technologies capable of rapidly recovering bacteria from blood-derived samples is crucial to human health. To address this need, we report a novel bacterial recovery technology from positive blood cultures that couples selective hemolysis with centrifugation through a sucrose cushion to perform rapid, background-free cytometric ASTs without long subculturing steps. Demonstrated on the most common bloodstream infection-causing bacteria: Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, near-pure bacteria are rapidly recovered (≤15 min) with minimal user intervention. Susceptibilities of recovered bacteria are readily performed via high throughput flow cytometry with excellent agreement with much slower, standard microbroth dilution assays. Altogether, this novel direct-from-positive blood culture AST technology enables susceptibility determinations within as little as 5 h, post blood culture positivity.


Assuntos
Hemocultura , Sepse , Antibacterianos/farmacologia , Bactérias , Escherichia coli , Humanos , Testes de Sensibilidade Microbiana , Staphylococcus aureus
4.
J Phys Chem B ; 125(20): 5200-5209, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33978414

RESUMO

Modulating fluorescent protein emission holds great potential for increasing readout sensitivity for applications in biological imaging and detection. Here, we identify and engineer optically modulated yellow fluorescent proteins (EYFP, originally 10C, but renamed EYFP later, and mVenus) to yield new emitters with distinct modulation profiles and unique, optically gated, delayed fluorescence. The parent YFPs are individually modulatable through secondary illumination, depopulating a long-lived dark state to dynamically increase fluorescence. A single point mutation introduced near the chromophore in each of these YFPs provides access to a second, even longer-lived modulatable dark state, while a different double mutant renders EYFP unmodulatable. The naturally occurring dark state in the parent YFPs yields strong fluorescence modulation upon long-wavelength-induced dark state depopulation, allowing selective detection at the frequency at which the long wavelength secondary laser is intensity modulated. Distinct from photoswitches, however, this near IR secondary coexcitation repumps the emissive S1 level from the long-lived triplet state, resulting in optically activated delayed fluorescence (OADF). This OADF results from secondary laser-induced, reverse intersystem crossing (RISC), producing additional nanosecond-lived, visible fluorescence that is delayed by many microseconds after the primary excitation has turned off. Mutation of the parent chromophore environment opens an additional modulation pathway that avoids the OADF-producing triplet state, resulting in a second, much longer-lived, modulatable dark state. These Optically Modulated and Optically Activated Delayed Fluorescent Proteins (OMFPs and OADFPs) are thus excellent for background- and reference-free, high sensitivity cellular imaging, but time-gated OADF offers a second modality for true background-free detection. Our combined structural and spectroscopic data not only gives additional mechanistic details for designing optically modulated fluorescent proteins but also provides the opportunity to distinguish similarly emitting OMFPs through OADF and through their unique modulation spectra.


Assuntos
Corantes Fluorescentes , Lasers , Espectrometria de Fluorescência
5.
Photoacoustics ; 20: 100198, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32685368

RESUMO

In molecular and cellular photoacoustic imaging with exogenous contrast agents, image contrast is plagued by background resulting from endogenous absorbers in tissue. By using optically modulatable nanoparticles, we develop ultra-sensitive photoacoustic imaging by rejecting endogenous background signals and drastically improving signal contrast through time-delayed pump-probe pulsed laser illumination. Gated by prior pump excitation, modulatable photoacoustic (mPA) signals are recovered from unmodulatable background through simple, real-time image processing to yield background-free photoacoustic signal recovery within tissue mimicking phantoms and from ex-vivo tissues. Inherently multimodal, the fluorescence and mPA sensitivity improvements demonstrate the promise of Synchronously Amplified Photoacoustic Image Recovery (SAPhIRe) for PA imaging in diagnosis and therapy.

6.
J Phys Chem A ; 124(7): 1437-1443, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31976677

RESUMO

Fluorescence from the xanthene dyes rose bengal, erythrosine B, eosin Y, and fluorescein is modulated by reversibly optically populating and depopulating their long-lived triplet states through coillumination with a second, long-wavelength laser. Here, we show that repumping the S1 state from the triplet generates strong, nanosecond-lived optically activated delayed fluorescence (OADF), microseconds to milliseconds after primary pulsed excitation. This time-delayed emission upon long-wavelength illumination generates fluorescence after triplet shelving and is a major contribution to fluorescence enhancement/modulation. The time-delayed and background-free OADF component is further increased using a >1 µs burst continuous wave excitation scheme to increase the steady-state triplet populations, yielding strong OADF even from strongly emissive fluorescein. Because emission is delayed long after the high-energy primary excitation, yellow-orange fluorescence is readily observed on zero background. As OADF generation depends on the triplet quantum yields and the reverse intersystem crossing rates, we directly probe the usually difficult-to-measure photophysics, create new zero-background detection schemes, and increase OADF through tailored excitation schemes, all improving sensitivity. The excellent match between experiments and simulations demonstrates the promise of these studies for OADF characterization, while enabling us to determine that OADF (in contrast to ground-state recovery and re-excitation) is the major component of fluorescence enhancement for xanthenes studied with triplet quantum yields exceeding 0.1.

7.
J Biol Chem ; 294(50): 19111-19118, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31694918

RESUMO

Live cell fluorescence imaging is the method of choice for studying dynamic processes, such as nuclear transport, vesicular trafficking, and virus entry and egress. However, endogenous cellular autofluorescence masks a useful fluorescence signal, limiting the ability to reliably visualize low-abundance fluorescent proteins. Here, we employed synchronously amplified fluorescence image recovery (SAFIRe), which optically alters ground versus photophysical dark state populations within fluorescent proteins to modulate and selectively detect their background-free emission. Using a photoswitchable rsFastLime fluorescent protein combined with a simple illumination and image-processing scheme, we demonstrate the utility of this approach for suppressing undesirable, unmodulatable fluorescence background. Significantly, we adapted this technique to different commercial wide-field and spinning-disk confocal microscopes, obtaining >10-fold improvements in signal to background. SAFIRe allowed visualization of rsFastLime targeted to mitochondria by efficiently suppressing endogenous autofluorescence or overexpressed cytosolic unmodulatable EGFP. Suppression of the overlapping EGFP signal provided a means to perform multiplexed imaging of rsFastLime and spectrally overlapping fluorophores. Importantly, we used SAFIRe to reliably visualize and track single rsFastLime-labeled HIV-1 particles in living cells exhibiting high and uneven autofluorescence signals. Time-lapse SAFIRe imaging can be performed for an extended period of time to visualize HIV-1 entry into cells. SAFIRe should be broadly applicable for imaging live cell dynamics with commercial microscopes, even in strongly autofluorescent cells or cells expressing spectrally overlapping fluorescent proteins.


Assuntos
Fluorescência , HIV-1/isolamento & purificação , Imagem Óptica , Animais , Sobrevivência Celular , Proteínas de Fluorescência Verde/química , Células HEK293 , Humanos , Camundongos , Microscopia de Fluorescência , Células NIH 3T3
8.
J Phys Chem A ; 123(16): 3599-3606, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30908044

RESUMO

Merocyanine 540 fluorescence can be enhanced by optically depopulating dark photoisomer states to regenerate the fluorescence-generating manifold of the all-trans isomer. Here, we utilize a competing modulation route, long-wavelength coexcitation of the trans triplet population to not only modulate fluorescence through enhanced ground-state recovery but also generate optically activated delayed fluorescence (OADF) with longer-wavelength co-illumination. Such OADF (∼580 nm) is directly observed with pulsed fluorescence excitation at 532 nm, followed by long-wavelength (637 nm) continuous wave depopulation of the photogenerated triplet by repopulating the emissive S1 state. Such reverse intersystem crossing (RISC) results in ns-lived fluorescence delayed by several microseconds after the initial primary excitation pulse and the prompt 1 ns-lived fluorescence that it induces. The dark state from which OADF is generated decays more rapidly with increased secondary laser intensity, as the optically induced RISC rate increases. This first OADF from organic dyes is observed, as the red secondary laser excites ∼580 nm, <1 ns-lived fluorescence from the previously optically prepared ∼1 µs-lived triplet state. This sequential two-photon, repumped fluorescence yields background-free collection with potential for new high-sensitivity fluorescence imaging schemes.

9.
J Am Chem Soc ; 141(29): 11465-11470, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30562465

RESUMO

Multinuclear silver clusters encapsulated by DNA exhibit size-tunable emission spectra and rich photophysics, but their atomic organization is poorly understood. Herein, we describe the structure of one such hybrid chromophore, a green-emitting Ag8 cluster arranged in a Big Dipper-shape bound to the oligonucleotide A2C4. Three 3' cytosine metallo-base pairs stabilize a parallel A-form-like duplex with a 5' adenine-rich pocket, which binds a metallic, trapezoidal-shaped Ag5 moiety via Ag-N bonds to endo- and exocyclic nitrogens of cytosine and adenine. The unique DNA configuration, constrained coordination environment, and templated Ag8 cluster arrangement highlight the reciprocity between the silvers and DNA in adopting this structure. These first atomic details of a DNA-encapsulated Ag cluster fluorophore illuminate many aspects of biological assembly, nanoscience, and metal cluster photophysics.


Assuntos
Oligonucleotídeos/química , Prata/química , Adenina/química , Pareamento de Bases , Cristalização , Cristalografia por Raios X , Citosina/química , Corantes Fluorescentes/química , Estrutura Molecular , Nitrogênio/química
10.
Cytometry A ; 93(6): 639-648, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29733508

RESUMO

Sepsis, a life-threatening immune response to blood infections (bacteremia), has a ∼30% mortality rate and is the 10th leading cause of US hospital deaths. The typical bacterial loads in adult septic patients are ≤100 bacterial cells (colony forming units, CFU) per ml blood, while pediatric patients exhibit only ∼1000 CFU/ml. Due to the low numbers, bacteria must be propagated through ∼24-hours blood cultures to generate sufficient CFUs for diagnosis and further analyses. Herein, we demonstrate that, unlike other rapid post-blood culture antibiotic susceptibility tests (ASTs), our phenotypic approach can drastically accelerate ASTs for the most common sepsis-causing gram-negative pathogens by circumventing long blood culture-based amplification. For all blood isolates of multi-drug resistant pathogens investigated (Escherichia coli, Klebsiella pneumoniae, and Acinetobacter nosocomialis), effective antibiotic(s) were readily identified within the equivalent of 8 hours from initial blood draw using <0.5 mL of adult blood per antibiotic. These methods should drastically improve patient outcomes by significantly reducing time to actionable treatment information and reduce the incidence of antibiotic resistance. © 2018 International Society for Advancement of Cytometry.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/fisiologia , Eritrócitos/microbiologia , Eritrócitos/fisiologia , Citometria de Fluxo/métodos , Fenótipo , Bacteriemia/sangue , Bacteriemia/tratamento farmacológico , Células Cultivadas , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Fatores de Tempo
11.
J Phys Chem B ; 121(48): 10733-10734, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29212327
12.
J Phys Chem Lett ; 8(15): 3536-3543, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28696723

RESUMO

We harness the photophysics of few-atom silver nanoclusters to create the first fluorophores capable of optically activated delayed fluorescence (OADF). In analogy with thermally activated delayed fluorescence, often resulting from oxygen- or collision-activated reverse intersystem crossing from triplet levels, this optically controllable/reactivated visible emission occurs with the same 2.2 ns fluorescence lifetime as that produced with primary excitation alone but is excited with near-infrared light from either of two distinct, long-lived photopopulated dark states. In addition to faster ground-state recovery under long-wavelength co-illumination, this "repumped" visible fluorescence occurs many microsceconds after visible excitation and only when gated by secondary near-IR excitation of ∼1-100 µs-lived dark excited states. By deciphering the Ag nanocluster photophysics, we demonstrate that OADF improves upon previous optical modulation schemes for near-complete background rejection in fluorescence detection. Likely extensible to other fluorophores with photopopulatable excited dark states, OADF holds potential for drastically improving fluorescence signal recovery from high backgrounds.

13.
J Phys Chem Lett ; 8(4): 733-736, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28125231

RESUMO

Modulation and optical control of photoswitchable fluorescent protein (PS-FP) dark state lifetimes drastically improves sensitivity and selectivity in fluorescence imaging. The dark state population of PS-FPs generates an out-of-phase fluorescence component relative to the sinusoidally modulated 488 nm laser excitation. Because this apparent phase advanced emission results from slow recovery to the fluorescent manifold, we hasten recovery and, therefore, modulation frequency by varying coillumination intensity at 405 nm. As 405 nm illumination regenerates the fluorescent ground state more rapidly than via thermal recovery, we experimentally demonstrate that secondary illumination can control PS-FPs dark state lifetime to act as an additional dimension for discriminating spatially and spectrally overlapping emitters. This experimental combination of out of phase imaging after optical modulation (OPIOM) and synchronously amplified fluorescence image recovery (SAFIRe) optically controls the fluorescent protein dark state lifetimes for improved time resolution, with the resulting modulation-based selective signal recovery being quantitatively modeled. The combined experimental results and quantitative numerical simulations further demonstrate the potential of SAFIRe-OPIOM for wide-field biological imaging with improved speed, sensitivity, and optical resolution over other modulation-based fluorescence microscopies.

14.
J Phys Chem Lett ; 7(13): 2496-501, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27299945

RESUMO

Excitation of few-atom Ag cluster fluorescence produces significant steady-state dark state populations that can be dynamically optically depopulated with long wavelength coillumination. Modulating this secondary illumination dynamically repopulates the ground state, thereby directly modulating nanodot fluorescence without modulating background. Both fast and slow modulation enable unmodulated background to be quantitatively removed in fluorescence correlation spectroscopy (FCS) through simple correlation-based averaging. Such modulated dual-laser FCS enables recovery of pure Ag nanodot fluorescence correlations even in the presence of strong, spectrally overlapping background emission. Fluorescence recovery is linear with Fourier amplitude of the modulated fluorescence, providing a complementary approach to background-free quantitation of modulatable emitter concentration in high background environments. Using the expanding range of modulatable fluorophores, such methodologies should facilitate biologically relevant studies in both complex autofluorescent environments and multiplexed assays.

15.
J Am Chem Soc ; 137(40): 12764-7, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26402244

RESUMO

Photoswitchable fluorescent proteins (PS-FPs) open grand new opportunities in biological imaging. Through optical manipulation of FP emission, we demonstrate that dual-laser modulated synchronously amplified fluorescence image recovery (DM-SAFIRe) improves signal contrast in high background through unambiguous demodulation and is linear in relative fluorophore abundance at different points in the cell. The unique bright-to-dark state interconversion rates of each PS-FP not only enables discrimination of different, yet spectrally indistinguishable FPs, but also allows signal rejection of diffusing relative to bound forms of the same PS-FP, rsFastLime. Adding to the sensitivity gains realized from rejecting non-modulatable background, the selective signal recovery of immobilized vs diffusing intracellular rsFastLime suggests that DM-SAFIRe can detect weak protein-protein interactions that are normally obscured by large fractions of unbound FPs.


Assuntos
Proteínas do Olho/química , Proteínas Luminescentes/química
16.
J Phys Chem B ; 119(13): 4637-43, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25763888

RESUMO

Cyanine dyes are well-known for their bright fluorescence and utility in biological imaging. However, cyanines also readily photoisomerize to produce nonemissive dark states. Co-illumination with a secondary, red-shifted light source on-resonance with the longer wavelength absorbing dark state reverses the photoisomerization and returns the cyanine dye to the fluorescent manifold, increasing steady-state fluorescence intensity. Modulation of this secondary light source dynamically alters emission intensity, drastically improving detection sensitivity and facilitating fluorescence signals to be recovered from an otherwise overwhelming background. Red and near-IR emitting cyanine derivatives have been synthesized with varying alkyl chain lengths and halogen substituents to alter dual-laser fluorescence enhancement. Photophysical properties and enhancement with dual laser modulation were coupled with density functional calculations to characterize substituent effects on dark state photophysics, potentially improving detection in high background biological environments.


Assuntos
Carbocianinas/química , Corantes Fluorescentes/química , Processos Fotoquímicos , Escuridão , Fluorescência , Lasers , Modelos Químicos , Espectrometria de Fluorescência
17.
Anal Chem ; 87(3): 1941-9, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25540985

RESUMO

Flow cytometry holds promise to accelerate antibiotic susceptibility determinations; however, without robust multidimensional statistical analysis, general discrimination criteria have remained elusive. In this study, a new statistical method, probability binning signature quadratic form (PB-sQF), was developed and applied to analyze flow cytometric data of bacterial responses to antibiotic exposure. Both sensitive lab strains (Escherichia coli and Pseudomonas aeruginosa) and a multidrug resistant, clinically isolated strain (E. coli) were incubated with the bacteria-targeted dye, maltohexaose-conjugated IR786, and each of many bactericidal or bacteriostatic antibiotics to identify changes induced around corresponding minimum inhibition concentrations (MIC). The antibiotic-induced damages were monitored by flow cytometry after 1-h incubation through forward scatter, side scatter, and fluorescence channels. The 3-dimensional differences between the flow cytometric data of the no-antibiotic treated bacteria and the antibiotic-treated bacteria were characterized by PB-sQF into a 1-dimensional linear distance. A 99% confidence level was established by statistical bootstrapping for each antibiotic-bacteria pair. For the susceptible E. coli strain, statistically significant increments from this 99% confidence level were observed from 1/16x MIC to 1x MIC for all the antibiotics. The same increments were recorded for P. aeruginosa, which has been reported to cause difficulty in flow-based viability tests. For the multidrug resistant E. coli, significant distances from control samples were observed only when an effective antibiotic treatment was utilized. Our results suggest that a rapid and robust antimicrobial susceptibility test (AST) can be constructed by statistically characterizing the differences between sample and control flow cytometric populations, even in a label-free scheme with scattered light alone. These distances vs paired controls coupled with rigorous statistical confidence limits offer a new path toward investigating initial biological responses, screening for drugs, and shortening time to result in antimicrobial sensitivity testing.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Citometria de Fluxo/métodos , Testes de Sensibilidade Microbiana/métodos , Pseudomonas aeruginosa/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Citometria de Fluxo/economia , Humanos , Testes de Sensibilidade Microbiana/economia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Fatores de Tempo
18.
Acc Chem Res ; 47(5): 1545-54, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24725021

RESUMO

Fluorescence microscopy and detection have become indispensible for understanding organization and dynamics in biological systems. Novel fluorophores with improved brightness, photostability, and biocompatibility continue to fuel further advances but often rely on having minimal background. The visualization of interactions in very high biological background, especially for proteins or bound complexes at very low copy numbers, remains a primary challenge. Instead of focusing on molecular brightness of fluorophores, we have adapted the principles of high-sensitivity absorption spectroscopy to improve the sensitivity and signal discrimination in fluorescence bioimaging. Utilizing very long wavelength transient absorptions of kinetically trapped dark states, we employ molecular modulation schemes that do not simultaneously modulate the background fluorescence. This improves the sensitivity and ease of implementation over high-energy photoswitch-based recovery schemes, as no internal dye reference or nanoparticle-based fluorophores are needed to separate the desired signals from background. In this Account, we describe the selection process for and identification of fluorophores that enable optically modulated fluorescence to decrease obscuring background. Differing from thermally stable photoswitches using higher-energy secondary lasers, coillumination at very low energies depopulates transient dark states, dynamically altering the fluorescence and giving characteristic modulation time scales for each modulatable emitter. This process is termed synchronously amplified fluorescence image recovery (SAFIRe) microscopy. By understanding and optically controlling the dye photophysics, we selectively modulate desired fluorophore signals independent of all autofluorescent background. This shifts the fluorescence of interest to unique detection frequencies with nearly shot-noise-limited detection, as no background signals are collected. Although the fluorescence brightness is improved slightly, SAFIRe yields up to 100-fold improved signal visibility by essentially removing obscuring, unmodulated background (Richards, C. I.; J. Am. Chem. Soc. 2009, 131, 4619). While SAFIRe exhibits a wide, linear dynamic range, we have demonstrated single-molecule signal recovery buried within 200 nM obscuring dye. In addition to enabling signal recovery through background reduction, each dye exhibits a characteristic modulation frequency indicative of its photophysical dynamics. Thus, these characteristic time scales offer opportunities not only to expand the dimensionality of fluorescence imaging by using dark-state lifetimes but also to distinguish the dynamics of subpopulations on the basis of photophysical versus diffusional time scales, even within modulatable populations. The continued development of modulation for signal recovery and observation of biological dynamics holds great promise for studying a range of transient biological phenomena in natural environments. Through the development of a wide range of fluorescent proteins, organic dyes, and inorganic emitters that exhibit significant dark-state populations under steady-state illumination, we can drastically expand the applicability of fluorescence imaging to probe lower-abundance complexes and their dynamics.


Assuntos
Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Espectrometria de Fluorescência/métodos , Algoritmos , Animais , Diagnóstico por Imagem , Humanos
19.
J Am Chem Soc ; 135(44): 16410-7, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24099419

RESUMO

Blue fluorescent proteins (BFPs) offer visualization of protein location and behavior, but often suffer from high autofluorescent background and poor signal discrimination. Through dual-laser excitation of bright and photoinduced dark states, mutations to the residues surrounding the BFP chromophore enable long-wavelength optical modulation of BFP emission. Such dark state engineering enables violet-excited blue emission to be increased upon lower energy, green coillumination. Turning this green coillumination on and off at a specific frequency dynamically modulates collected blue fluorescence without generating additional background. Interpreted as transient photoconversion between neutral cis and anionic trans chromophoric forms, mutations tune photoisomerization and ground state tautomerizations to enable long-wavelength depopulation of the millisecond-lived, spectrally shifted dark states. Single mutations to the tyrosine-based blue fluorescent protein T203V/S205V exhibit enhanced modulation depth and varied frequency. Importantly, analogous single point mutations in the nonmodulatable BFP, mKalama1, creates a modulatable variant. Building modulatable BFPs offers opportunities for improved BFP signal discrimination vs background, greatly enhancing their utility.


Assuntos
Proteínas Luminescentes/química , Animais , Células Cultivadas , Proteínas Luminescentes/genética , Proteínas Luminescentes/isolamento & purificação , Camundongos , Microscopia de Fluorescência , Modelos Moleculares , Mutagênese Sítio-Dirigida , Células NIH 3T3 , Fenômenos Ópticos
20.
J Phys Chem Lett ; 4(7): 1148-1155, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23745165

RESUMO

Conductive and plasmon-supporting noble metals exhibit an especially wide range of size-dependent properties, with discrete electronic levels, strong optical absorption, and efficient radiative relaxation dominating optical behavior at the ~10-atom cluster scale. In this Perspective, we describe the formation and stabilization of silver clusters using DNA templates and highlight the distinct spectroscopic and photophysical properties of the resulting hybrid fluorophores. Strong visible to near-IR emission from DNA-encapsulated silver clusters ranging in size from 5-11 atoms has been produced and characterized. Importantly, this strong Ag cluster fluorescence can be directly modulated and selectively recovered by optically controlling the dark state residence, even when faced with an overwhelming background. The strength and sequence sensitivity of the oligonucleotide-Ag interaction suggests strategies for fine tuning and stabilizing cluster-based emitters in a host of sensing and biolabeling applications that would benefit from brighter, more photostable, and quantifiable emitters in high background environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...