Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124680, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38963950

RESUMO

The present work focuses on the investigation of the thermal stability and structural integrity of amorphous alumina coatings intended for use as protective coatings on cladding tubes in Generation IV nuclear reactors, specifically in the Lead-cooled Fast Reactor (LFR) type. High-temperature Raman spectroscopy and high-temperature X-ray diffraction analyses were carried out up to 1050 °C on a 5 µm coating deposited by the pulsed laser deposition (PLD) technique on a 316L steel substrate. The experiments involved the in-situ examination of structural changes in the material under increasing temperature, along with ex-situ Raman imaging of the surface and cross-section of the coating after thermal treatments of different lengths. As it was expected, the presence of α-alumina was detected with the addition of other polymorphs, γ- and θ-Al2O3, found in the material after longer high-temperature exposure. The use of two structural analysis methods and two lasers excitation wavelengths with Raman spectroscopy allowed us to detect all the mentioned phases despite different mode activity. Alumina analysis was based on the emission spectra, while substrate oxidation products were identified through the structural bands. The experiments depicted a dependence of the phase composition of oxidation products and alumina's degree of crystallization on the length of the treatment. Nevertheless, the observed structural changes did not occur rapidly, and the coating's integrity remained intact. Moreover, oxidation signs occurred locally at temperatures exceeding the LFR reactor's working temperature, confirming the material's great potential as a protective coating in the operational conditions of LFR nuclear reactors.

2.
Materials (Basel) ; 16(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37570064

RESUMO

A series of FeSe0.5Te0.5 bulk samples have been prepared using the high gas pressure and high-temperature synthesis (HP-HTS) method to optimize the growth conditions for the first time and investigated for their superconducting properties using structural, microstructure, transport, and magnetic measurements to reach the final conclusions. Ex situ and in situ processes are used to prepare bulk samples under a range of growth pressures using Ta-tube and without Ta-tube. The parent compound synthesized by convenient synthesis method at ambient pressure (CSP) exhibits a superconducting transition temperature of 14.8 K. Our data demonstrate that the prepared FeSe0.5Te0.5 sealed in a Ta-tube is of better quality than the samples without a Ta-tube, and the optimum growth conditions (500 MPa, 600 °C for 1 h) are favorable for the development of the tetragonal FeSe0.5Te0.5 phase. The optimum bulk FeSe0.5Te0.5 depicts a higher transition temperature of 17.3 K and a high critical current density of the order of >104 A/cm2 at 0 T, which is improved over the entire magnetic field range and almost twice higher than the parent compound prepared using CSP. Our studies confirm that the high-pressure synthesis method is a highly efficient way to improve the superconducting transition, grain connectivity, sample density, and pinning properties of a superconductor.

3.
Materials (Basel) ; 16(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37049186

RESUMO

The enhanced performance of superconducting FeSe0.5Te0.5 materials with added micro-sized Pb and Sn particles is presented. A series of Pb- and Sn-added FeSe0.5Te0.5 (FeSe0.5Te0.5 + xPb + ySn; x = y = 0-0.1) bulks are fabricated by the solid-state reaction method and characterized through various measurements. A very small amount of Sn and Pb additions (x = y ≤ 0.02) enhance the transition temperature (Tconset) of pure FeSe0.5Te0.5 by ~1 K, sharpening the superconducting transition and improving the metallic nature in the normal state, whereas larger metal additions (x = y ≥ 0.03) reduce Tconset by broadening the superconducting transition. Microstructural analysis and transport studies suggest that at x = y > 0.02, Pb and Sn additions enhance the impurity phases, reduce the coupling between grains, and suppress the superconducting percolation, leading to a broad transition. FeSe0.5Te0.5 samples with 2 wt% of cometal additions show the best performance with their critical current density, Jc, and the pinning force, Fp, which might be attributable to providing effective flux pinning centres. Our study shows that the inclusion of a relatively small amount of Pb and Sn (x = y ≤ 0.02) works effectively for the enhancement of superconducting properties with an improvement of intergrain connections as well as better phase uniformity.

4.
Materials (Basel) ; 15(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36079207

RESUMO

The application of nano-Ag grains as antiviral and antibacterial materials is widely known since ancient times. The problem is the toxicity of the bulk or big-size grain materials. It is known that nano-sized silver grains affect human and animal cells in some medical treatments. The aim of this study is to investigate the influence of nano-Ag grains embedded in a carbonaceous matrix on cytotoxicity, genotoxicity in fibroblasts, and mutagenicity. The nanocomposite film is composed of silver nanograins embedded in a carbonaceous matrix and it was obtained via the PVD method by deposition from two separated sources of fullerenes and silver acetate powders. This method allows for the preparation of material in the form of a film or powder, in which Ag nanograins are stabilized by a carbon network. The structure and morphology of this material were studied using SEM/EDX, XRD, and Raman spectroscopy. The toxicology studies were performed for various types of the material differing in the size of Ag nanograins. Furthermore, it was found that these properties, such as cell viability, genotoxicity, and mutagenicity, depend on Ag grain size.

5.
Nat Nanotechnol ; 17(11): 1192-1197, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36138199

RESUMO

The MXene family of two-dimensional transition metal carbides and nitrides already includes ~50 members with distinct numbers of atomic layers, stoichiometric compositions and solid solutions, in-plane or out-of-plane ordering of atoms, and a variety of surface terminations. MXenes have shown properties that make them attractive for applications ranging from energy storage to electronics and medicine. Although this compositional variability allows fine-tuning of the MXene properties, it also creates challenges during the analysis of MXenes because of the presence of multiple light elements (for example, H, C, N, O, and F) in close proximity. Here, we show depth profiling of single particles of MXenes and their parent MAX phases with atomic resolution using ultralow-energy secondary-ion mass spectrometry. We directly detect oxygen in the carbon sublattice, thereby demonstrating the existence of oxycarbide MXenes. We also determine the composition of adjacent surface termination layers and show their interaction with each other. Analysis of the metal sublattice shows that Mo2TiAlC2 MAX exhibits perfect out-of-plane ordering, whereas Cr2TiAlC2 MAX exhibits some intermixing between Cr and Ti in the inner transition metal layer. Our results showcase the capabilities of the developed secondary-ion mass spectrometry technique to probe the composition of layered and two-dimensional materials with monoatomic-layer precision.

6.
J Phys Condens Matter ; 34(12)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34915463

RESUMO

We have performed electron transport and angle-resolved photo-emission spectroscopy (ARPES) measurements on single crystals of transition metal dipnictide TaAs2cleaved along the (2¯01) surface which has the lowest cleavage energy. A Fourier transform of the Shubnikov-de Haas oscillations shows four different peaks whose angular dependence was studied with respect to the angle between magnetic field and the [2¯01] direction. The results indicate elliptical shape of the Fermi surface cross-sections. Additionally, a mobility spectrum analysis was carried out, which also reveals at least four types of carriers contributing to the conductance (two kinds of electrons and two kinds of holes). ARPES spectra were taken on freshly cleaved (2¯01) surface and it was found that bulk states pockets at constant energy surface are elliptical, which confirms the magnetotransport angle dependent studies. First-principles calculations support the interpretation of the experimental results. The theoretical calculations better reproduce the ARPES data if the theoretical Fermi level (FL) is increased, which is due to a small n-doping of the samples. This shifts the FL closer to the Dirac point, allowing investigating the physics of the Dirac and Weyl points, making this compound a platform for the investigation of the Dirac and Weyl points in three-dimensional materials.

7.
Dalton Trans ; 50(41): 14762-14773, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34590656

RESUMO

The whitlockite-related materials have attracted researchers' attention because of their potential application in various fields, especially in optoelectronics. In the present work, the structure of novel whitlockite-related oxides Ca10TM0.5(VO4)7 (TM = Co, Cu) is studied at room and high temperatures, using X-ray powder diffraction. These compounds form by fractional substitution of divalent transition metal atoms into the Ca3(VO4)2 lattice. Rietveld refinements provided the structural details. The lattice parameters are a = 10.78074(6) Å, c = 37.8196(2) Å, and V = 3806.67(4) Å3 for Ca10Co0.5(VO4)7 and a = 10.78710(7) Å, c = 37.8997(3) Å, and V = 3819.23(4) Å3 for Ca10Cu0.5(VO4)7. Structure refinement results show that among the five available sites (M1-M5), the M2+ ions select the M5 site. This finding is confirmed by analysis of interatomic distances: due to the difference in size between TM and Ca ions sharing the M5 site, the M5-O distance shortens by about 5.0% for Ca10Co0.5(VO4)7 and 2.7% for Ca10Cu0.5(VO4)7 with respect to the unsubstituted parent compound, Ca3(VO4)2. The observed trends in the crystallographic properties of the studied crystals are in line with those of previously reported structurally related phosphates, Ca10.5-xMx(PO4)7 (M = Mg or divalent transition metal). Moreover, the observed tendency for occupation of M5 by small divalent ions follows the earlier theoretical results. For cobalt and copper substituted orthovanadate and orthophosphate whitlockite related materials, a linear variation in the unit cell size is demonstrated. The common equation for evaluation of volume is applicable to the substitution of the two transition metals in orthovanadate and orthophosphate whitlockite related materials. Thermal expansion is investigated for both compounds. The variations of the lattice parameters and the thermal expansion coefficient with temperature are determined in the 300-810 K range. The lattice parameter, a, expands by 0.80% for Ca10Co0.5(VO4)7 and 0.74% for Ca10Cu0.5(VO4)7 in this range. The lattice parameter, c, enlarges by about 0.70% for both samples. In the studied temperature range, the volume thermal expansion coefficient of Ca10Co0.5(VO4)7 increases from 37.2 to 44.8 MK-1 and for Ca10Cu0.5(VO4)7, it increases from 35.1 to 45.2 MK-1; the observed expansion anisotropy is smaller than those of other related compounds.

8.
Materials (Basel) ; 14(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34442938

RESUMO

Intermediate annealing treatment (IAT) is a new process that accelerates the bainitic transformation in steels. This stimulation is crucial, especially in the prolonged production of nanobainitic steels. Among other recognised methods, it seems to be an effective and economical process. However, there are very few research works in this area. The objective of this study was to collate microstructural changes caused by IAT with differences in the kinetics of the subsequent bainitic transformation in the X37CrMoV5-1 tool steel. Differential dilatometry, LM and SEM microscopic observations, EDS and XRD analysis, and computer simulations were used to investigate the effect of IAT on the kinetics of bainitic transformation. The study has revealed that introducing an additional isothermal heating stage immediately after austenitising significantly affects the kinetics of bainitic transformation-it can accelerate or suppress it. The type and strength of the effect depends on the concentration, distribution, and morphology of the precipitations that occurred during IAT.

9.
Materials (Basel) ; 14(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064794

RESUMO

In the presented work, the properties of carbon materials obtained in the reaction of sodium bicarbonate (C-SB) and ammonium oxalate (C-AO) with magnesium by combustion synthesis were investigated. For the materials obtained in this way, the influence of the type of precursor on their properties was analyzed, including: Degree of crystallinity, porous structure, surface topography, and electrochemical properties. It has been shown that the products obtained in magnesiothermic process were found to contain largely the turbostratic carbon forming a petal-like graphene material. Both materials were used as modifiers of carbon paste electrodes, which were then used to determine the concentration of chlorophenol solutions by voltammetric method. It was shown that the peak current determined from the registered differential pulse voltammograms was mainly influenced by the volume of mesopores and the adsorption capacity of 4-chlorophenol for both obtained carbons.

10.
Sci Rep ; 7(1): 7428, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28785047

RESUMO

Due to their broadband nonlinear optical properties, low-dimensional materials are widely used for pulse generation in fiber and solid-state lasers. Here we demonstrate novel materials, Bi2Te2Se (BTS) and Sn-doped Bi2Te2Se (BSTS), which can be used as a universal saturable absorbers for distinct spectral regimes. The material was mechanically exfoliated from a bulk single-crystal and deposited onto a side-polished fiber. We have performed characterization of the fabricated devices and employed them in polarization-maintaining ytterbium- and erbium-doped fiber lasers. This enabled us to obtain self-starting passively Q-switched regime at 1 µm and 1.56 µm. The oscillators emitted stable, linearly polarized radiation with the highest single pulse energy approaching 692 nJ. Both lasers are characterized by the best performance observed in all-polarization maintaining Q-switched fiber lasers with recently investigated new saturable absorbers, which was enabled by a very high damage threshold of the devices. This demonstrates the great potential of the investigated materials for the ultrafast photonics community.

11.
Sci Rep ; 7: 45247, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28338074

RESUMO

Second-order nonlinear optical materials are used to generate new frequencies by exploiting second-harmonic generation (SHG), a phenomenon where a nonlinear material generates light at double the optical frequency of the input beam. Maximum SHG is achieved when the pump and the generated waves are in phase, for example through birefringence in uniaxial crystals. However, applying these materials usually requires a complicated cutting procedure to yield a crystal with a particular orientation. Here we demonstrate the first example of phase matching under the normal incidence of SHG in a biaxial monoclinic single crystal of zinc tungstate. The crystal was grown by the micro-pulling-down method with the (102) plane perpendicular to the growth direction. Additionally, at the same time white light was generated as a result of stimulated Raman scattering and multiphoton luminescence induced by higher-order effects such as three-photon luminescence enhanced by cascaded third-harmonic generation. The annealed crystal offers SHG intensities approximately four times larger than the as grown one; optimized growth and annealing conditions may lead to much higher SHG intensities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...