Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(3): 1957-1966, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38264790

RESUMO

Nitrene transfer reactions catalyzed by heme proteins have broad potential for the stereoselective formation of carbon-nitrogen bonds. However, competition between productive nitrene transfer and the undesirable reduction of nitrene precursors limits the broad implementation of such biocatalytic methods. Here, we investigated the reduction of azides by the model heme protein myoglobin to gain mechanistic insights into the factors that control the fate of key reaction intermediates. In this system, the reaction proceeds via a proposed nitrene intermediate that is rapidly reduced and protonated to give a reactive ferrous amide species, which we characterized by UV/vis and Mössbauer spectroscopies, quantum mechanical calculations, and X-ray crystallography. Rate-limiting protonation of the ferrous amide to produce the corresponding amine is the final step in the catalytic cycle. These findings contribute to our understanding of the heme protein-catalyzed reduction of azides and provide a guide for future enzyme engineering campaigns to create more efficient nitrene transferases. Moreover, harnessing the reduction reaction in a chemoenzymatic cascade provided a potentially practical route to substituted pyrroles.

2.
J Phys Chem A ; 128(1): 343-354, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38113457

RESUMO

Selective and feasible reactions are among the top targets in synthesis planning. Mayr's approach to quantifying chemical reactivity has greatly facilitated the planning process, but reactivity parameters for new compounds require time-consuming experiments. In the past decade, data-driven modeling has been gaining momentum in the field, as it shows promise in terms of efficient reactivity prediction. However, state-of-the-art models use quantum chemical data as input, which prevent access to real-time planning in organic synthesis. Here, we present a novel data-driven workflow for predicting reactivity parameters of molecules that takes only structural information as input, enabling de facto real-time reactivity predictions. We use the well-understood chemical space of benzhydrylium ions as an example to demonstrate the functionality of our approach and the performance of the resulting quantitative structure-reactivity relationships (QSRRs). Our results suggest that it is straightforward to build low-cost QSRR models that are accurate, interpretable, and transferable to unexplored systems within a given scope of application. Moreover, our QSRR approach suggests that Hammett σ parameters are only approximately additive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...