Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 54(17): 5117-21, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25712404

RESUMO

The ergot alkaloids, a class of fungal-derived natural products with important biological activities, are derived from a common intermediate, chanoclavine-I, which is elaborated into a set of diverse structures. Herein we report the discovery of the biosynthetic pathway of cycloclavine, a complex ergot alkaloid containing a cyclopropyl moiety. We used a yeast-based expression platform along with in vitro biochemical experiments to identify the enzyme that catalyzes a rearrangement of the chanoclavine-I intermediate to form a cyclopropyl moiety. The resulting compound, cycloclavine, was produced in yeast at titers of >500 mg L(-1) , thus demonstrating the feasibility of the heterologous expression of these complex alkaloids.


Assuntos
Enzimas/metabolismo , Alcaloides de Claviceps/biossíntese , Proteínas Fúngicas/metabolismo , Alcaloides Indólicos/metabolismo , Aspergillus fumigatus/genética , Ciclopropanos/química , Enzimas/genética , Alcaloides de Claviceps/química , Proteínas Fúngicas/genética , Alcaloides Indólicos/química , Família Multigênica , Saccharomyces cerevisiae/metabolismo
2.
Angew Chem Weinheim Bergstr Ger ; 127(17): 5206-5210, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27546918

RESUMO

The ergot alkaloids, a class of fungal-derived natural products with important biological activities, are derived from a common intermediate, chanoclavine-I, which is elaborated into a set of diverse structures. Herein we report the discovery of the biosynthetic pathway of cycloclavine, a complex ergot alkaloid containing a cyclopropyl moiety. We used a yeast-based expression platform along with in vitro biochemical experiments to identify the enzyme that catalyzes a rearrangement of the chanoclavine-I intermediate to form a cyclopropyl moiety. The resulting compound, cycloclavine, was produced in yeast at titers of >500 mg L-1, thus demonstrating the feasibility of the heterologous expression of these complex alkaloids.

3.
Antimicrob Agents Chemother ; 58(1): 455-66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24189258

RESUMO

Human fungal infections represent a therapeutic challenge. Although effective strategies for treatment are available, resistance is spreading, and many therapies have unacceptable side effects. A clear need for novel antifungal targets and molecules is thus emerging. Here, we present the identification and characterization of the plant-derived diyne-furan fatty acid EV-086 as a novel antifungal compound. EV-086 has potent and broad-spectrum activity in vitro against Candida, Aspergillus, and Trichophyton spp., whereas activities against bacteria and human cell lines are very low. Chemical-genetic profiling of Saccharomyces cerevisiae deletion mutants identified lipid metabolic processes and organelle organization and biogenesis as targets of EV-086. Pathway modeling suggested that EV-086 inhibits delta-9 fatty acid desaturation, an essential process in S. cerevisiae, depending on the delta-9 fatty acid desaturase OLE1. Delta-9 unsaturated fatty acids-but not saturated fatty acids-antagonized the EV-086-mediated growth inhibition, and transcription of the OLE1 gene was strongly upregulated in the presence of EV-086. EV-086 increased the ratio of saturated to unsaturated free fatty acids and phosphatidylethanolamine fatty acyl chains, respectively. Furthermore, EV-086 was rapidly taken up into the lipid fraction of the cell and incorporated into phospholipids. Together, these findings demonstrate that EV-086 is an inhibitor of delta-9 fatty acid desaturation and that the mechanism of inhibition might involve an EV-086-phospholipid. Finally, EV-086 showed efficacy in a guinea pig skin dermatophytosis model of topical Trichophyton infection, which demonstrates that delta-9 fatty acid desaturation is a valid antifungal target, at least for dermatophytoses.


Assuntos
Antifúngicos/uso terapêutico , Ácidos Graxos Dessaturases/antagonistas & inibidores , Tinha/tratamento farmacológico , Animais , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Cobaias , Estearoil-CoA Dessaturase
4.
J Biol Chem ; 286(28): 25027-38, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21482823

RESUMO

Intracellular transport is largely dependent on vesicles that bud off from one compartment and fuse with the target compartment. The first contact of an incoming vesicle with the target membrane is mediated by tethering factors. The tethering factor responsible for recruiting Golgi-derived vesicles to the ER is the Dsl1 tethering complex, which is comprised of the essential proteins Dsl1p, Dsl3p, and Tip20p. We investigated the role of the Tip20p subunit at the ER by analyzing two mutants, tip20-5 and tip20-8. Both mutants contained multiple mutations that were scattered throughout the TIP20 sequence. Individual mutations could not reproduce the temperature-sensitive phenotype of tip20-5 and tip20-8, indicating that the overall structure of Tip20p might be altered in the mutants. Using molecular dynamics simulations comparing Tip20p and Tip20-8p revealed that some regions, particularly the N-terminal domain and parts of the stalk region, were more flexible in the mutant protein, consistent with its increased susceptibility to proteolysis. Both Tip20-5p and Tip20-8p mutants prevented proper ER trans-SNARE complex assembly in vitro. Moreover, Tip20p mutant proteins disturbed the interaction between Dsl1p and the coatomer coat complex, indicating that the Dsl1p-coatomer interaction could be stabilized or regulated by Tip20p. We provide evidence for a direct role of the Dsl1 complex, in particular Tip20p, in the formation and stabilization of ER SNARE complexes.


Assuntos
Retículo Endoplasmático/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Retículo Endoplasmático/genética , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Complexos Multiproteicos/genética , Mutação , Estrutura Terciária de Proteína , Proteínas SNARE/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida , Proteínas de Transporte Vesicular/genética
5.
Eukaryot Cell ; 7(10): 1819-30, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18723607

RESUMO

TOR is a structurally and functionally conserved Ser/Thr kinase found in two multiprotein complexes that regulate many cellular processes to control cell growth. Although extensively studied, the localization of TOR is still ambiguous, possibly because endogenous TOR in live cells has not been examined. Here, we examined the localization of green fluorescent protein (GFP) tagged, endogenous TOR1 and TOR2 in live S. cerevisiae cells. A DNA cassette encoding three copies of green fluorescent protein (3XGFP) was inserted in the TOR1 gene (at codon D330) or the TOR2 gene (at codon N321). The TORs were tagged internally because TOR1 or TOR2 tagged at the N or C terminus was not functional. The TOR1(D330-3XGFP) strain was not hypersensitive to rapamycin, was not cold sensitive, and was not resistant to manganese toxicity caused by the loss of Pmr1, all indications that TOR1-3XGFP was expressed and functional. TOR2-3XGFP was functional, as TOR2 is an essential gene and TOR2(N321-3XGFP) haploid cells were viable. Thus, TOR1 and TOR2 retain function after the insertion of 748 amino acids in a variable region of their noncatalytic domain. The localization patterns of TOR1-3XGFP and TOR2-3XGFP were documented by imaging of live cells. TOR1-3XGFP was diffusely cytoplasmic and concentrated near the vacuolar membrane. The TOR2-3XGFP signal was cytoplasmic but predominately in dots at the plasma membrane. Thus, TOR1 and TOR2 have distinct localization patterns, consistent with the regulation of cellular processes as part of two different complexes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Citoplasma/química , Citoplasma/genética , Citoplasma/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/genética , Transporte Proteico , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
6.
J Cell Sci ; 121(Pt 8): 1293-302, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18388317

RESUMO

The small GTPase Ypt1p of the Rab family is required for docking of ER-derived transport vesicles with the Golgi prior to fusion. However, the identity of the Rab protein that mediates docking of Golgi-derived COPI vesicles with the ER in retrograde transport remains elusive. Here, we show that in yeast Ypt1p is essential for retrograde transport from the Golgi to the ER. Retrieval of gpalphaF-HDEL (glycolylated pro-alpha-factor with an HDEL tag at the C-terminus) was blocked in Deltaypt1/SLY1-20 membranes at the restrictive temperature in vitro. Moreover, Ypt1p and the ER-resident t-SNARE Ufe1p interact genetically and biochemically, indicating a role for Ypt1p in consumption of COPI vesicles at the ER. Ypt1p is also essential for the maintenance of the morphology and the protein composition of the Golgi. Interestingly, the concentrations of the Golgi enzymes Anp1p and Mnn1p, the cargo protein Emp47p and the v-SNARE Sec22p were all substantially reduced in Golgi from a Deltaypt1/SLY1-20 strain as compared with wild-type Golgi, while the concentration of Arf1p and of coatomer were mildly affected. Finally, COPI vesicles generated from Deltaypt1/SLY1-20 Golgi membranes in vitro were depleted of Emp47p and Sec22p. These data demonstrate that Ypt1p plays an essential role in retrograde transport from the Golgi to the ER.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas rab de Ligação ao GTP/fisiologia , Microscopia Eletrônica , Microscopia de Fluorescência , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...