Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 2594, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788259

RESUMO

Sensory perturbations are a valuable tool to assess sensory integration mechanisms underlying balance. Implemented as systems-identification approaches, they can be used to quantitatively assess balance deficits and separate underlying causes. However, the experiments require controlled perturbations and sophisticated modeling and optimization techniques. Here we propose and validate a virtual reality implementation of moving visual scene experiments together with model-based interpretations of the results. The approach simplifies the experimental implementation and offers a platform to implement standardized analysis routines. Sway of 14 healthy young subjects wearing a virtual reality head-mounted display was measured. Subjects viewed a virtual room or a screen inside the room, which were both moved during a series of sinusoidal or pseudo-random room or screen tilt sequences recorded on two days. In a between-subject comparison of 10 [Formula: see text] 6 min long pseudo-random sequences, each applied at 5 amplitudes, our results showed no difference to a real-world moving screen experiment from the literature. We used the independent-channel model to interpret our data, which provides a direct estimate of the visual contribution to balance, together with parameters characterizing the dynamics of the feedback system. Reliability estimates of single subject parameters from six repetitions of a 6 [Formula: see text] 20-s pseudo-random sequence showed poor test-retest agreement. Estimated parameters show excellent reliability when averaging across three repetitions within each day and comparing across days (Intra-class correlation; ICC 0.7-0.9 for visual weight, time delay and feedback gain). Sway responses strongly depended on the visual scene, where the high-contrast, abstract screen evoked larger sway as compared to the photo-realistic room. In conclusion, our proposed virtual reality approach allows researchers to reliably assess balance control dynamics including the visual contribution to balance with minimal implementation effort.


Assuntos
Equilíbrio Postural , Realidade Virtual , Humanos , Reprodutibilidade dos Testes , Equilíbrio Postural/fisiologia , Retroalimentação , Voluntários Saudáveis
2.
Sensors (Basel) ; 17(5)2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28534857

RESUMO

The rise of autonomous systems operating close to humans imposes new challenges in terms of robustness and precision on the estimation and control algorithms. Approaches based on nonlinear optimization, such as moving horizon estimation, have been shown to improve the accuracy of the estimated solution compared to traditional filter techniques. This paper introduces an optimization-based framework for multi-sensor fusion following a moving horizon scheme. The framework is applied to the often occurring estimation problem of motion tracking by fusing measurements of a global navigation satellite system receiver and an inertial measurement unit. The resulting algorithm is used to estimate position, velocity, and orientation of a maneuvering airplane and is evaluated against an accurate reference trajectory. A detailed study of the influence of the horizon length on the quality of the solution is presented and evaluated against filter-like and batch solutions of the problem. The versatile configuration possibilities of the framework are finally used to analyze the estimated solutions at different evaluation times exposing a nearly linear behavior of the sensor fusion problem.

3.
J Acoust Soc Am ; 140(1): EL101, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27475197

RESUMO

Subjective audio quality evaluation experiments have been conducted to assess the performance of embedded-optimization-based precompensation algorithms for mitigating perceptible linear and nonlinear distortion in audio signals. It is concluded with statistical significance that the perceived audio quality is improved by applying an embedded-optimization-based precompensation algorithm, both in case (i) nonlinear distortion and (ii) a combination of linear and nonlinear distortion is present. Moreover, a significant positive correlation is reported between the collected subjective and objective PEAQ audio quality scores, supporting the validity of using PEAQ to predict the impact of linear and nonlinear distortion on the perceived audio quality.

4.
Bioprocess Biosyst Eng ; 36(2): 151-64, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22847361

RESUMO

The optimal design and operation of dynamic bioprocesses gives in practice often rise to optimisation problems with multiple and conflicting objectives. As a result typically not a single optimal solution but a set of Pareto optimal solutions exist. From this set of Pareto optimal solutions, one has to be chosen by the decision maker. Hence, efficient approaches are required for a fast and accurate generation of the Pareto set such that the decision maker can easily and systematically evaluate optimal alternatives. In the current paper the multi-objective optimisation of several dynamic bioprocess examples is performed using the freely available ACADO Multi-Objective Toolkit ( http://www.acadotoolkit.org ). This toolkit integrates efficient multiple objective scalarisation strategies (e.g., Normal Boundary Intersection and (Enhanced) Normalised Normal Constraint) with fast deterministic approaches for dynamic optimisation (e.g., single and multiple shooting). It has been found that the toolkit is able to efficiently and accurately produce the Pareto sets for all bioprocess examples. The resulting Pareto sets are added as supplementary material to this paper.


Assuntos
Simulação por Computador , Modelos Biológicos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...