Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 157(3): 975-8, 1984 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-6546569

RESUMO

In growing cultures of Methanobrevibacter arboriphilicus (Methanobrevibacter arboriphilus), the synthesis of active carbon monoxide dehydrogenase required nickel. The 21-fold-purified enzyme from 63Ni-labeled cells of M. arboriphilicus comigrated with 63Ni during gel filtration. These results provide evidence that the carbon monoxide dehydrogenase of methanogens is a nickel protein.


Assuntos
Aldeído Oxirredutases/análise , Euryarchaeota/enzimologia , Complexos Multienzimáticos , Níquel/análise , Aldeído Oxirredutases/isolamento & purificação , Aldeído Oxirredutases/metabolismo , Cromatografia em Gel , Níquel/farmacologia
2.
J Bacteriol ; 136(2): 597-606, 1978 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-711675

RESUMO

Cultures of Clostridium formicoaceticum and C. thermoaceticum growing on fructose and glucose, respectively, were shown to rapidly oxidize CO to CO(2). Rates up to 0.4 mumol min(-1) mg of wet cells(-1) were observed. Carbon monoxide oxidation by cell suspensions was found (i) to be dependent on pyruvate, (ii) to be inhibited by alkyl halides and arsenate, and (iii) to stimulate CO(2) reduction to acetate. Cell extracts catalyzed the oxidation of carbon monoxide with methyl viologen at specific rates up to 10 mumol min(-1) mg of protein(-1) (35 degrees C, pH 7.2). Nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate and ferredoxin from C. pasteurianum were ineffective as electron acceptors. The catalytic mechanism of carbon monoxide oxidation was "ping-pong," indicating that the enzyme catalyzing carbon monoxide oxidation can be present in an oxidized and a reduced form. The oxidized form was shown to react reversibly with cyanide, and the reduced form was shown to react reversibly with alkyl halides: cyanide inactivated the enzyme only in the absence of carbon monoxide, and alkyl halides inactivated it only in the presence of carbon monoxide. Extracts inactivated by alkyl halides were reactivated by photolysis. The findings are interpreted to indicate that carbon monoxide oxidation in the two bacteria is catalyzed by a corrinoid enzyme and that in vivo the reaction is coupled with the reduction of CO(2) to acetate. Cultures of C. acidi-urici and C. cylindrosporum growing on hypoxanthine were found not to oxidize CO, indicating that clostridia mediating a corrinoid-independent total synthesis of acetate from CO(2) do not possess a CO-oxidizing system.


Assuntos
Monóxido de Carbono/metabolismo , Clostridium/metabolismo , Acetatos/metabolismo , Dióxido de Carbono/metabolismo , Sistema Livre de Células , Cianetos/farmacologia , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA