Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 6(12): 4035-4046, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27815347

RESUMO

The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein) family consists of three independent members, Scube1-3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3N294K/N294K), which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC). Scube3N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB), associated with the chromosomal region of human SCUBE3 In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3N294K/N294K mice. The Scube3N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function.


Assuntos
Estudos de Associação Genética , Glicoproteínas/genética , Mutação , Fenótipo , Animais , Osso e Ossos/metabolismo , Proteínas de Ligação ao Cálcio , Mapeamento Cromossômico , Modelos Animais de Doenças , Metabolismo Energético/genética , Exoma , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Rim/metabolismo , Rim/fisiopatologia , Testes de Função Renal , Masculino , Camundongos , Camundongos Knockout , Osteíte Deformante/genética , Osteíte Deformante/metabolismo , Osteíte Deformante/patologia , Esqueleto/anormalidades
2.
Mamm Genome ; 27(3-4): 111-21, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26803617

RESUMO

We performed exome sequencing for mutation discovery of an ENU (N-ethyl-N-nitrosourea)-derived mouse model characterized by significant elevated plasma alkaline phosphatase (ALP) activities in female and male mutant mice, originally named BAP014 (bone screen alkaline phosphatase #14). We identified a novel loss-of-function mutation within the Fam46a (family with sequence similarity 46, member A) gene (NM_001160378.1:c.469G>T, NP_001153850.1:p.Glu157*). Heterozygous mice of this mouse line (renamed Fam46a (E157*Mhda)) had significantly high ALP activities and apparently no other differences in morphology compared to wild-type mice. In contrast, homozygous Fam46a (E157*Mhda) mice showed severe morphological and skeletal abnormalities including short stature along with limb, rib, pelvis, and skull deformities with minimal trabecular bone and reduced cortical bone thickness in long bones. ALP activities of homozygous mutants were almost two-fold higher than in heterozygous mice. Fam46a is weakly expressed in most adult and embryonic tissues with a strong expression in mineralized tissues as calvaria and femur. The FAM46A protein is computationally predicted as a new member of the superfamily of nucleotidyltransferase fold proteins, but little is known about its function. Fam46a (E157*Mhda) mice are the first mouse model for a mutation within the Fam46a gene.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/patologia , Códon sem Sentido , Exoma , Fosfatase Alcalina/metabolismo , Animais , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Análise Mutacional de DNA , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Expressão Gênica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos , Camundongos Knockout , Fenótipo
3.
Assay Drug Dev Technol ; 13(8): 476-87, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26461432

RESUMO

Fibroblast growth factor 23 (FGF23) is a bone-derived endocrine key regulator of phosphate homeostasis. It inhibits renal tubular phosphate reabsorption by activating receptor complexes composed of FGF receptor 1c (FGFR1c) and the co-receptor Klotho. As a major signaling pathway mitogen-activated protein kinase (MAPK) pathway is employed. In this study, we established an FGF23-inducible cell model by stably expressing human Klotho in HEK293 cells (HEK293-KL cells) containing endogenous FGF receptors. To identify novel small molecule compounds that modulate FGF23/FGFR1c/Klotho signaling, we developed and optimized a cell-based assay that is suited for high-throughput screening. The assay monitors the phosphorylation of endogenous extracellular signal-regulated kinase 1 and 2 in cellular lysates of HEK293-KL cells after induction with FGF23. This cell-based assay was highly robust (Z' factor >0.5) and the induction of the system is strictly dependent on the presence of FGF23. The inhibitor response curves generated using two known MAPK pathway inhibitors correlate well with data obtained by another assay format. This assay was further used to identify small molecule modulators of the FGF23 signaling cascade by screening the 1,280 food and drug administration-approved small molecule library of Prestwick Chemical. The primary hit rate was 2% and false positives were efficiently identified by retesting the hits in primary and secondary validation screening assays and in western blot analysis. Intriguingly, by using a basic FGF (bFGF)/FGFR counterscreening approach, one validated hit compound retained specificity toward FGF23 signaling, while bFGF signaling was not affected. Since increased plasma concentrations of FGF23 are the main cause of many hypophosphatemic disorders, a modulation of its effect could be a potential novel strategy for therapeutic intervention. Moreover, this strategy may be valuable for other disorders affecting phosphate homeostasis.


Assuntos
Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Citometria de Fluxo/tendências , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Citometria de Fluxo/métodos , Células HEK293 , Humanos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Transdução de Sinais/fisiologia , Bibliotecas de Moléculas Pequenas/análise
4.
J Clin Endocrinol Metab ; 100(5): E776-82, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25763608

RESUMO

CONTEXT: Insulinomas represent pancreatic neuroendocrine neoplasms that cause severe morbidity attributed to their often pronounced endocrine activity. Apart from hereditary forms such as multiple endocrine neoplasia type 1 (MEN-1), genetic causes for sporadic insulinoma development had remained obscure until recently. Applying next-generation sequencing methods, disease-causing genetic alterations have been identified in various endocrine tumors. OBJECTIVE AND DESIGN: Paired tumor and blood DNA from eight patients with sporadic insulinomas (five females and two malignant tumors) were analyzed by whole-exome sequencing. After this initial analysis, Ying Yang 1 (YY1) mutation status was assessed in a larger cohort of 39 additional insulinomas (including eight malignant and one liver metastasis) from three German hospitals by targeted sequencing. The mutation status was correlated with various clinical parameters. RESULTS: A range of one to 12 somatic genetic variants were identified by exome sequencing. A recurrent somatic Thr372Arg YY1 point mutation was detected in two patients of the initial cohort and four patients of the second cohort (total, six of 47; 13%). The presence of the mutation was associated with a trend toward higher age (63.5 y; IQR, 48.0-74.0 vs 45.0 y; IQR, 33.0-63.0; P = .05), and all affected patients were females (six of six; P = .04). All other clinical parameters, including the presence of malignancy and metastatic spread, tumor localization, and hypoglycemic episodes were not different between YY1-mutated and nonmutated tumor carriers. CONCLUSIONS: The somatic Thr372Arg YY1 mutation is a relevant finding in female patients with sporadic insulinomas. The prevalence of this mutation in this Caucasian population is considerably lower compared to that of a recently described Asian cohort.


Assuntos
Insulinoma/genética , Mutação , Neoplasias Pancreáticas/genética , Fator de Transcrição YY1/genética , Adulto , Idoso , Exoma , Feminino , Humanos , Insulinoma/patologia , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/patologia
5.
Int J Cancer ; 136(1): 65-73, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24828787

RESUMO

Chronic lymphocytic leukemia (CLL) cells fail to enter apoptosis in vivo as opposed to their non-malignant B-lymphocyte counterparts. The ability of CLL cells to escape apoptosis is highly dependent on their microenvironment. Compared to non-malignant B cells, CLL cells are more responsive to complex stimuli that can be reproduced in vitro by the addition of cytokines. To understand the molecular mechanism of the environment-dependent anti-apoptotic signaling circuitry of CLL cells, we quantified the effect of the SDF-1, BAFF, APRIL, anti-IgM, interleukin-4 (IL4) and secreted CD40L (sCD40L) on the survival of in vitro cultured CLL cells and found IL4 and sCD40L to be most efficient in rescuing CLL cells from apoptosis. In quantitative dose-response experiments using cell survival as readout, the binding affinity of IL4 to its receptor was similar between malignant and non-malignant cells. However, the downstream signaling in terms of the amount of STAT6 and its degree of phosphorylation was highly stimulated in CLL cells. In contrast, the response to sCD40L showed a loss of cooperative binding in CLL cells but displayed a largely increased ligand binding affinity. Although a high-throughput microscopy analysis did not reveal a significant difference in the spatial CD40 receptor organization, the downstream signaling showed an enhanced activation of the NF-kB pathway in the malignant cells. Thus, we propose that the anti-apoptotic phenotype of CLL involves a sensitized response for IL4 dependent STAT6 phosphorylation, and an activation of NF-kB signaling due to an increased affinity of sCD40L to its receptor.


Assuntos
Ligante de CD40/metabolismo , Sobrevivência Celular , Interleucina-4/fisiologia , NF-kappa B/metabolismo , Fator de Transcrição STAT6/metabolismo , Apoptose , Linfócitos B/fisiologia , Ligante de CD40/fisiologia , Estudos de Casos e Controles , Humanos , Leucemia Linfocítica Crônica de Células B , Fosforilação , Processamento de Proteína Pós-Traducional , Transdução de Sinais
6.
N Engl J Med ; 370(11): 1019-28, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24571724

RESUMO

BACKGROUND: Corticotropin-independent Cushing's syndrome is caused by tumors or hyperplasia of the adrenal cortex. The molecular pathogenesis of cortisol-producing adrenal adenomas is not well understood. METHODS: We performed exome sequencing of tumor-tissue specimens from 10 patients with cortisol-producing adrenal adenomas and evaluated recurrent mutations in candidate genes in an additional 171 patients with adrenocortical tumors. We also performed genomewide copy-number analysis in 35 patients with cortisol-secreting bilateral adrenal hyperplasias. We studied the effects of these genetic defects both clinically and in vitro. RESULTS: Exome sequencing revealed somatic mutations in PRKACA, which encodes the catalytic subunit of cyclic AMP-dependent protein kinase (protein kinase A [PKA]), in 8 of 10 adenomas (c.617A→C in 7 and c.595_596insCAC in 1). Overall, PRKACA somatic mutations were identified in 22 of 59 unilateral adenomas (37%) from patients with overt Cushing's syndrome; these mutations were not detectable in 40 patients with subclinical hypercortisolism or in 82 patients with other adrenal tumors. Among 35 patients with cortisol-producing hyperplasias, 5 (including 2 first-degree relatives) carried a germline copy-number gain (duplication) of the genomic region on chromosome 19 that includes PRKACA. In vitro studies showed impaired inhibition of both PKA catalytic subunit mutants by the PKA regulatory subunit, whereas cells from patients with germline chromosomal gains showed increased protein levels of the PKA catalytic subunit; in both instances, basal PKA activity was increased. CONCLUSIONS: Genetic alterations of the catalytic subunit of PKA were found to be associated with human disease. Germline duplications of this gene resulted in bilateral adrenal hyperplasias, whereas somatic PRKACA mutations resulted in unilateral cortisol-producing adrenal adenomas. (Funded by the European Commission Seventh Framework Program and others.).


Assuntos
Adenoma/genética , Neoplasias das Glândulas Suprarrenais/genética , Hiperplasia Suprarrenal Congênita/genética , Síndrome de Cushing/etiologia , Proteínas Quinases Dependentes de AMP Cíclico/genética , Mutação em Linhagem Germinativa , Adenoma/complicações , Adenoma/enzimologia , Neoplasias das Glândulas Suprarrenais/complicações , Neoplasias das Glândulas Suprarrenais/enzimologia , Adulto , Domínio Catalítico , Síndrome de Cushing/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Exoma , Humanos , Hidrocortisona/biossíntese , Pessoa de Meia-Idade , Mutação , Conformação Proteica , Análise de Sequência de DNA
7.
Am J Pathol ; 183(2): 352-68, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23791841

RESUMO

Within the Munich, Germany, N-ethyl-N-nitrosourea mouse mutagenesis program, we isolated a dominant Jak1 mouse model resembling phenotypic characteristics related to autoimmune disease. Chromosomal sequencing revealed a new Jak1 (p.Ser645Pro) point mutation at the conserved serine of the pseudokinase domain, corresponding to a somatic human mutation (p.Ser646Phe) inducing a constitutive activation of the Janus kinase (JAK)/STAT pathway. Morphologically, all Jak1(S645P+/-) mice showed a progressive structural deterioration of ears starting at the age of 4 months, with mononuclear cell infiltration into the dermis. Female mutant mice, in particular, developed severe skin lesions in the neck from 7 months of age. The IHC analysis of these lesions showed an activation of Stat3 downstream to Jak1(S645P) and elevated tissue levels of IL-6. Histopathological analysis of liver revealed a nodular regenerative hyperplasia. In the spleen, the number of Russell bodies was doubled, correlating with significant increased levels of all immunoglobulin isotypes and anti-DNA antibodies in serum. Older mutant mice developed thrombocytopenia and altered microcytic red blood cell counts. Jak1(S645P+/-) mice showed phenotypes related to impaired bone metabolism as increased carboxy-terminal collagen cross-link-1 levels and alkaline phosphatase activities in plasma, hypophosphatemia, and strongly decreased bone morphometric values. Taken together, Jak1(S645P+/-) mice showed an increased activation of the IL-6-JAK-STAT pathway leading to a systemic lupus erythematosus-like phenotype and offering a new valuable tool to study the role of the JAK/STAT pathway in disease development.


Assuntos
Doenças Autoimunes/genética , Janus Quinase 1/genética , Mutação Puntual/genética , Animais , Doenças Autoimunes/patologia , Biomarcadores/metabolismo , Modelos Animais de Doenças , Otopatias/genética , Feminino , Hiperplasia/genética , Hiperplasia/patologia , Hipofosfatemia/genética , Hipofosfatemia/patologia , Interleucina-6/metabolismo , Fígado/patologia , Masculino , Megacariócitos/patologia , Camundongos , Camundongos Endogâmicos , Mutagênese/genética , Fenótipo , Fator de Transcrição STAT3/metabolismo , Dermatopatias Genéticas/genética , Baço/patologia , Subpopulações de Linfócitos T , Trombocitopenia/genética
8.
Nat Genet ; 45(4): 440-4, 444e1-2, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23416519

RESUMO

Primary aldosteronism is the most prevalent form of secondary hypertension. To explore molecular mechanisms of autonomous aldosterone secretion, we performed exome sequencing of aldosterone-producing adenomas (APAs). We identified somatic hotspot mutations in the ATP1A1 (encoding an Na(+)/K(+) ATPase α subunit) and ATP2B3 (encoding a Ca(2+) ATPase) genes in three and two of the nine APAs, respectively. These ATPases are expressed in adrenal cells and control sodium, potassium and calcium ion homeostasis. Functional in vitro studies of ATP1A1 mutants showed loss of pump activity and strongly reduced affinity for potassium. Electrophysiological ex vivo studies on primary adrenal adenoma cells provided further evidence for inappropriate depolarization of cells with ATPase alterations. In a collection of 308 APAs, we found 16 (5.2%) somatic mutations in ATP1A1 and 5 (1.6%) in ATP2B3. Mutation-positive cases showed male dominance, increased plasma aldosterone concentrations and lower potassium concentrations compared with mutation-negative cases. In summary, dominant somatic alterations in two members of the ATPase gene family result in autonomous aldosterone secretion.


Assuntos
Neoplasias do Córtex Suprarrenal/etiologia , Adenoma Adrenocortical/etiologia , Aldosterona/metabolismo , Hipertensão/etiologia , Mutação/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , ATPase Trocadora de Sódio-Potássio/genética , Cálcio/metabolismo , Células Cultivadas , Eletrofisiologia , Humanos , Técnicas Imunoenzimáticas , Potássio/metabolismo , Sódio/metabolismo
9.
Br J Haematol ; 154(3): 349-56, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21615384

RESUMO

Chronic lymphocytic leukaemia (CLL) cells convert CD14(+) cells from patients into 'nurse-like' cells (NLCs). CLL cells can also convert CD14(+) peripheral blood mononuclear cells (PBMCs) from healthy donors into cells with morphological similarities to NLCs (CD14(CLL) -cells). However it is unclear whether only CLL cells induce this conversion process. This study showed that CD14(+) PBMCs from healthy donors could also be converted into differentiated cells (CD14(B) -cells) by non-malignant B-cells. In order to identify changes specifically induced by CLL cells, we compared gene expression profiles of NLCs, CD14(CLL) -cells and CD14(B) -cells. CD14(+) cells cultured with CLL cells were more similar to NLCs than those cultured with non-malignant B-cells. The most significant changes induced by CLL cells were deregulation of the antigen presentation pathway and of genes related to immunity. NLCs had reduced levels of lysozyme activity, CD74 and HLA-DR in-vitro while expression of inhibitory FCGR2B was increased. These findings suggest an impaired immunocompetence of NLCs which, if found in-vivo, could contribute to the immunodeficiency in CLL patients.


Assuntos
Imunocompetência/genética , Leucemia Linfocítica Crônica de Células B/imunologia , Leucócitos Mononucleares/imunologia , Imunidade Adaptativa/genética , Linfócitos B/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Técnicas de Cocultura , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Antígenos HLA/metabolismo , Humanos , Imunidade Inata/genética , Leucemia Linfocítica Crônica de Células B/genética , Receptores de Lipopolissacarídeos/sangue , Muramidase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...