Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dent Res ; 97(3): 296-302, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28922616

RESUMO

The effects of pH cycling immersion on the corrosion of glass-based ceramic materials were investigated by examining the silicon release level in the immersion solution and the surface morphology of the ceramic after immersion. The hypothesis that pH cycling causes more surface degradation than constant immersion was tested. An inductively coupled plasma atomic emission spectrometer was used for Si ion concentration determination and scanning electron microscopy for surface morphology analyses. Two pH cycling sequences (pH 2, 7, 10 and pH 10, 2, 7) were employed in this study. Glass-ceramic disks were immersed in each pH solution for 3 d, then cycled for 27 d. The silicon release levels during the pH cycling were significantly higher than those in the constant pH immersion. The silicon levels for both cycling sequences were around 47 and 2 times higher than that in constant pH conditions for 2 and 10, respectively. The morphology of the ceramic treated with cycling was also significantly degraded as compared with the ceramic immersed in the constant pH solution. Thus, the severity of glass-ceramic degradation depends not only on the pH of the immersed solution but also on the pH of the previous solution. Since the pH of the oral environment can vary depending on the diet and buffering capacity of saliva, materials testing in constant pH immersion might underestimate the in vivo corrosion. New mechanisms were proposed to account for the effect of pH cycling on glass-ceramic corrosion.


Assuntos
Cerâmica/química , Silício/química , Corrosão , Concentração de Íons de Hidrogênio , Troca Iônica , Teste de Materiais , Microscopia Eletrônica de Varredura , Espectrofotometria Atômica , Propriedades de Superfície
2.
J Dent Res ; 92(5): 467-71, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23569159

RESUMO

We tested the hypotheses that glass-ceramic veneers and overglazes degrade by ion exchange in an acidic environment, and that they degrade by breakdown of the silica network in a basic environment. Disk specimens of glass-ceramic veneer and glaze were fabricated and immersed in pH 2, 7, or 10 buffer solutions, for 1, 3, 5, 10, 15, and 30 days. Each specimen was placed in a shaker bath containing de-ionized distilled water at 80°C. Concentrations of Al(3+), Ca(2+), Zn(2+), Li(2+), and Si(4+) were analyzed by means of inductively coupled plasma atomic emission spectrometry (ICP/AES). Statistical analyses were performed by factorial ANOVA. Significant differences occurred among leached ion concentrations as a function of material type, solution pH, and exposure time. A substantial release of Si occurred at pH 10 over time, leading to a breakdown of the glass phase. At pH 2, dissolution was controlled by an ionic exchange mechanism. We conclude that ceramic veneers and glazes may be susceptible to considerable degradation in low- and high-pH buffer solutions.


Assuntos
Porcelana Dentária/química , Facetas Dentárias , Análise de Variância , Planejamento de Prótese Dentária , Concentração de Íons de Hidrogênio , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...