Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 8(4): 3807-12, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24635654

RESUMO

A graphene lateral spin valve structure with asymmetric contacts is presented for the first time, with enhancement of spin angular momentum absorption in its receiving magnet. The asymmetric device with tunneling barrier only at the injector magnet shows a comparable spin valve signal but lower electrical noises compared to the device with two tunneling barriers. We also report experimental measurements of spin transfer torque. Assisted by an external magnetic field of 2.5 mT, spin diffusion current-induced magnetization reversal occurs at a nonlocal charge current density of 33 mA/µm(2), smaller than that needed in devices with two tunneling barriers.

2.
Nano Lett ; 13(11): 5177-81, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24127734

RESUMO

Spin-based devices are widely discussed for post-complementary metal-oxide-semiconductor (CMOS) applications. A number of spin device ideas propose using spin current to carry information coherently through a spin channel and transfering it to an output magnet by spin transfer torque. Graphene is an ideal channel material in this context due to its long spin diffusion length, gate-tunable carrier density, and high carrier mobility. However, spin transfer torque has not been demonstrated in graphene or any other semiconductor material as of yet. Here, we report the first experimental measurement of spin transfer torque in graphene lateral nonlocal spin valve devices. Assisted by an external magnetic field, the magnetization reversal of the ferromagnetic receiving magnet is induced by pure spin diffusion currents from the input magnet. The magnetization switching is reversible between parallel and antiparallel configurations, depending on the polarity of the applied charged current. The presented results are an important step toward developing graphene-based spin logic and understanding spin-transfer torque in systems with tunneling barriers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...