Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1169658, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342207

RESUMO

Despite the identification of numerous molecular pathways modulating cardiac hypertrophy its pathogenesis is not completely understood. In this study we define an unexpected role for Fibin ("fin bud initiation factor homolog") in cardiomyocyte hypertrophy. Via gene expression profiling in hypertrophic murine hearts after transverse aortic constriction we found a significant induction of Fibin. Moreover, Fibin was upregulated in another mouse model of cardiac hypertrophy (calcineurin-transgenics) as well as in patients with dilated cardiomyopathy. Immunoflourescence microscopy revealed subcellular localization of Fibin at the sarcomeric z-disc. Overexpression of Fibin in neonatal rat ventricular cardiomyocytes revealed a strong anti-hypertrophic effect through inhibiting both, NFAT- and SRF-dependent signalling. In contrast, transgenic mice with cardiac-restricted overexpression of Fibin developed dilated cardiomyopathy, accompanied by induction of hypertrophy-associated genes. Moreover, Fibin overexpression accelerated the progression to heart failure in the presence of prohypertrophic stimuli such as pressure overload and calcineurin overexpression. Histological and ultrastructural analyses surprisingly showed large protein aggregates containing Fibin. On the molecular level, aggregate formation was accompanied by an induction of the unfolded protein response subsequent UPR-mediated apoptosis and autophagy. Taken together, we identified Fibin as a novel potent negative regulator of cardiomyocyte hypertrophy in vitro. Yet, heart-specific Fibin overexpression in vivo causes development of a protein-aggregate-associated cardiomyopathy. Because of close similarities to myofibrillar myopathies, Fibin represents a candidate gene for cardiomyopathy and Fibin transgenic mice may provide additional mechanistic insight into aggregate formation in these diseases.

2.
Exp Cell Res ; 408(2): 112865, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34637763

RESUMO

Protein homeostasis (proteostasis) in multicellular organisms depends on the maintenance of force-bearing and force-generating cellular structures. Within myofibrillar Z-discs of striated muscle, isoforms of synaptopodin-2 (SYNPO2/myopodin) act as adapter proteins that are engaged in proteostasis of the actin-crosslinking protein filamin C (FLNc) under mechanical stress. SYNPO2 directly binds F-actin, FLNc and α-actinin and thus contributes to the architectural features of the actin cytoskeleton. By its association with autophagy mediating proteins, i.e. BAG3 and VPS18, SYNPO2 is also engaged in protein quality control and helps to target mechanical unfolded and damaged FLNc for degradation. Here we show that deficiency of all SYNPO2-isoforms in myotubes leads to decreased myofibrillar stability and deregulated autophagy under mechanical stress. In addition, isoform-specific proteostasis functions were revealed. The PDZ-domain containing variant SYNPO2b and the shorter, PDZ-less isoform SYNPO2e both localize to Z-discs. Yet, SYNPO2e is less stably associated with the Z-disc than SYNPO2b, and is dynamically transferred into FLNc-containing myofibrillar lesions under mechanical stress. SYNPO2e also recruits BAG3 into these lesions via interaction with the WW domain of BAG3. Our data provide evidence for a role of myofibrillar lesions as a transient quality control compartment essential to prevent and repair contraction-induced myofibril damage in muscle and indicate an important coordinating activity for SYNPO2 therein.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas dos Microfilamentos/genética , Músculo Esquelético/metabolismo , Estresse Mecânico , Proteínas de Transporte Vesicular/genética , Citoesqueleto de Actina/genética , Actinina/genética , Actinas/genética , Animais , Autofagia/genética , Linhagem Celular , Citoesqueleto/genética , Humanos , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Estriado/metabolismo , Miofibrilas/genética , Miofibrilas/metabolismo , Domínios PDZ/genética , Isoformas de Proteínas/genética , Sinaptofisina/genética
3.
JACC Basic Transl Sci ; 6(4): 365-380, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33997522

RESUMO

Autophagy is a cellular degradation process that has been implicated in diverse disease processes. The authors provide evidence that FYCO1, a component of the autophagic machinery, is essential for adaptation to cardiac stress. Although the absence of FYCO1 does not affect basal autophagy in isolated cardiomyocytes, it abolishes induction of autophagy after glucose deprivation. Likewise, Fyco1-deficient mice subjected to starvation or pressure overload are unable to respond with induction of autophagy and develop impaired cardiac function. FYCO1 overexpression leads to induction of autophagy in isolated cardiomyocytes and transgenic mouse hearts, thereby rescuing cardiac dysfunction in response to biomechanical stress.

4.
J Biol Chem ; 292(37): 15180-15191, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28717008

RESUMO

The z-disc is a structural component at the lateral borders of the sarcomere and is important for mechanical stability and contractility of both cardiac and skeletal muscles. Of note, the sarcomeric z-disc also represents a nodal point in cardiomyocyte function and signaling. Mutations of numerous z-disc proteins are associated with cardiomyopathies and muscle diseases. To identify additional z-disc proteins that might contribute to cardiac disease, we employed an in silico screen for cardiac-enriched cDNAs. This screen yielded a previously uncharacterized protein named cardiac-enriched FHL2-interacting protein (CEFIP), which exhibited a heart- and skeletal muscle-specific expression profile. Importantly, CEFIP was located at the z-disc and was up-regulated in several models of cardiomyopathy. We also found that CEFIP overexpression induced the fetal gene program and cardiomyocyte hypertrophy. Yeast two-hybrid screens revealed that CEFIP interacts with the calcineurin-binding protein four and a half LIM domains 2 (FHL2). Because FHL2 binds calcineurin, a phosphatase controlling hypertrophic signaling, we examined the effects of CEFIP on the calcineurin/nuclear factor of activated T-cell (NFAT) pathway. These experiments revealed that CEFIP overexpression further enhances calcineurin-dependent hypertrophic signal transduction, and its knockdown repressed hypertrophy and calcineurin/NFAT activity. In summary, we report on a previously uncharacterized protein CEFIP that modulates calcineurin/NFAT signaling in cardiomyocytes, a finding with possible implications for the pathogenesis of cardiomyopathy.


Assuntos
Calcineurina/metabolismo , Proteínas de Transporte/metabolismo , Modelos Biológicos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo , Transdução de Sinais , Animais , Animais Recém-Nascidos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Linhagem Celular Transformada , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Transporte Proteico , Interferência de RNA , Ratos Wistar , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/metabolismo
5.
Cardiovasc Res ; 110(3): 381-94, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27056896

RESUMO

AIMS: Down syndrome-associated dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (DYRK1A) is a ubiquitously expressed protein kinase. Up to date a variety of targets have been identified, establishing a key role for Dyrk1a in selected signalling pathways. In cardiomyocytes, Dyrk1a acts as a negative regulator of hypertrophy by phosphorylating transcription factors of the NFAT family, but its mechanistic function in the heart remains poorly understood. This study was designed to investigate a potential protective role of Dyrk1a in cardiac hypertrophy in vivo. METHODS AND RESULTS: We generated transgenic mice with cardiac-specific overexpression of Dyrk1a. Counterintuitively, these mice developed severe dilated cardiomyopathy associated with congestive heart failure and premature death. In search for the cause of this unexpected phenotype, we found that Dyrk1a interacts with all members of the D-cyclin family and represses their protein levels in vitro and in vivo. Particularly, forced expression of Dyrk1a leads to increased phosphorylation of Ccnd2 on Thr280 and promotes its subsequent proteasomal degradation. Accordingly, cardiomyocytes overexpressing Dyrk1a display hypo-phosphorylated Rb1, suppression of Rb/E2f-signalling, and reduced expression of E2f-target genes, which ultimately results in impaired cell cycle progression. CONCLUSIONS: We identified Dyrk1a as a novel negative regulator of D-cyclin-mediated Rb/E2f-signalling. As dysregulation of this pathway with impaired cardiomyocyte proliferation leads to cardiomyopathy, dose-specific Dyrk1a expression and activity appears to be critical for the hyperplastic and hypertrophic growth of the developing heart.


Assuntos
Cardiomegalia/enzimologia , Cardiomiopatia Dilatada/enzimologia , Ciclina D/metabolismo , Fatores de Transcrição E2F/metabolismo , Miócitos Cardíacos/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Retinoblastoma/metabolismo , Transdução de Sinais , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Ciclo Celular , Proliferação de Células , Ciclina D/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células HEK293 , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/patologia , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Ratos Wistar , Fatores de Tempo , Transfecção , Quinases Dyrk
6.
J Biol Chem ; 291(8): 4128-43, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26719331

RESUMO

The intercalated disc (ID) is a "hot spot" for heart disease, as several ID proteins have been found mutated in cardiomyopathy. Myozap is a recent addition to the list of ID proteins and has been implicated in serum-response factor signaling. To elucidate the cardiac consequences of targeted deletion of myozap in vivo, we generated myozap-null mutant (Mzp(-/-)) mice. Although Mzp(-/-) mice did not exhibit a baseline phenotype, increased biomechanical stress due to pressure overload led to accelerated cardiac hypertrophy, accompanied by "super"-induction of fetal genes, including natriuretic peptides A and B (Nppa/Nppb). Moreover, Mzp(-/-) mice manifested a severe reduction of contractile function, signs of heart failure, and increased mortality. Expression of other ID proteins like N-cadherin, desmoplakin, connexin-43, and ZO-1 was significantly perturbed upon pressure overload, underscored by disorganization of the IDs in Mzp(-/-) mice. Exploration of the molecular causes of enhanced cardiac hypertrophy revealed significant activation of ß-catenin/GSK-3ß signaling, whereas MAPK and MKL1/serum-response factor pathways were inhibited. In summary, myozap is required for proper adaptation to increased biomechanical stress. In broader terms, our data imply an essential function of the ID in cardiac remodeling beyond a mere structural role and emphasize the need for a better understanding of this molecular structure in the context of heart disease.


Assuntos
Cardiomegalia/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Musculares/metabolismo , Fator de Resposta Sérica/metabolismo , Transativadores/metabolismo , beta Catenina/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Ratos , Fator de Resposta Sérica/genética , Transativadores/genética , Fatores de Transcrição , beta Catenina/genética
7.
Basic Res Cardiol ; 107(3): 262, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22421737

RESUMO

Muscle LIM protein (MLP) has been proposed to be a central player in the pathogenesis of heart muscle disease. In line with this notion, the homozygous loss of MLP results in cardiac hypertrophy and dilated cardiomyopathy. Moreover, MLP is induced in several models of cardiac hypertrophy such as aortic banding and myocardial infarction. We thus hypothesized that overexpression of MLP might change the hypertrophic response to cardiac stress. In order to answer the question whether MLP modulates cardiac hypertrophy in vivo, we generated a novel transgenic mouse model with cardiac-specific overexpression of MLP. Three independent transgenic lines did not show a pathological phenotype under baseline conditions. Specifically, contractile function and heart weight to body weight ratios at different ages were normal. Next, the transgenic animals were challenged with pressure overload due to aortic constriction. Surprisingly, transgenic mice developed cardiac hypertrophy to the same extent as their wild-type littermates. Moreover, neither contractile dysfunction nor pathological gene expression in response to pressure overload were differentially affected by MLP overexpression. Finally, in a milder in vivo model of hypertrophy induced by chronic infusion of angiotensin-II, cardiac mass and hypertrophic gene expression were again identical in MLP transgenic mice and controls. Taken together, we provide evidence that cardiac overexpression of MLP does not modulate the heart's response to various forms of pathological stress.


Assuntos
Cardiomegalia/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Remodelação Ventricular , Angiotensina II , Animais , Animais Recém-Nascidos , Aorta/cirurgia , Pressão Sanguínea , Cardiomegalia/diagnóstico por imagem , Cardiomegalia/etiologia , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Genótipo , Proteínas com Domínio LIM/genética , Ligadura , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Proteínas Musculares/genética , Contração Miocárdica , Miocárdio/patologia , Fenótipo , Ratos , Ratos Wistar , Ultrassonografia , Função Ventricular Esquerda
8.
PLoS One ; 7(3): e30985, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22427801

RESUMO

The c-Jun N-terminal kinase (JNK)-inhibiting peptide D-JNKI-1, syn. XG-102 was tested for its therapeutic potential in acute inflammatory bowel disease (IBD) in mice. Rectal instillation of the chemical irritant trinitrobenzene sulfonic acid (TNBS) provoked a dramatic acute inflammation in the colon of 7-9 weeks old mice. Coincident subcutaneous application of 100 µg/kg XG-102 significantly reduced the loss of body weight, rectal bleeding and diarrhoea. After 72 h, the end of the study, the colon was removed and immuno-histochemically analysed. XG-102 significantly reduced (i) pathological changes such as ulceration or crypt deformation, (ii) immune cell pathology such as infiltration and presence of CD3- and CD68-positive cells, (iii) the production of tumor necrosis factor (TNF)-α in colon tissue cultures from TNBS-treated mice, (iv) expression of Bim, Bax, FasL, p53, and activation of caspase 3, (v) complexation of JNK2 and Bim, and (vi) expression and activation of the JNK substrate and transcription factor c-Jun. A single application of subcutaneous XG-102 was at least as effective or even better depending on the outcome parameter as the daily oral application of sulfasalazine used for treatment of IBD.The successful and substantial reduction of the severe, TNBS-evoked intestinal damages and clinical symptoms render the JNK-inhibiting peptide XG-102 a powerful therapeutic principle of IBD.


Assuntos
Apoptose/efeitos dos fármacos , Colite Ulcerativa/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Peptídeos/farmacologia , Análise de Variância , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Western Blotting , Complexo CD3/metabolismo , Caspase 3/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Proteína Ligante Fas/metabolismo , Imunofluorescência , Imuno-Histoquímica , Imunoprecipitação , Proteínas de Membrana/metabolismo , Camundongos , Peptídeos/uso terapêutico , Proteínas Proto-Oncogênicas/metabolismo , Ácido Trinitrobenzenossulfônico/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Redução de Peso/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...