Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 11(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38858068

RESUMO

Sleep disruption and impaired synaptic processes are common features in neurodegenerative diseases, including Alzheimer's disease (AD). Hyperphosphorylated Tau is known to accumulate at neuronal synapses in AD, contributing to synapse dysfunction. However, it remains unclear how sleep disruption and synapse pathology interact to contribute to cognitive decline. Here, we examined sex-specific onset and consequences of sleep loss in AD/tauopathy model PS19 mice. Using a piezoelectric home-cage monitoring system, we showed PS19 mice exhibited early-onset and progressive hyperarousal, a selective dark-phase sleep disruption, apparent at 3 months in females and 6 months in males. Using the Morris water maze test, we report that chronic sleep disruption (CSD) accelerated the onset of decline of hippocampal spatial memory in PS19 males only. Hyperarousal occurs well in advance of robust forebrain synaptic Tau burden that becomes apparent at 6-9 months. To determine whether a causal link exists between sleep disruption and synaptic Tau hyperphosphorylation, we examined the correlation between sleep behavior and synaptic Tau, or exposed mice to acute or chronic sleep disruption at 6 months. While we confirm that sleep disruption is a driver of Tau hyperphosphorylation in neurons of the locus ceruleus, we were unable to show any causal link between sleep loss and Tau burden in forebrain synapses. Despite the finding that hyperarousal appears earlier in females, female cognition was resilient to the effects of sleep disruption. We conclude sleep disruption interacts with the synaptic Tau burden to accelerate the onset of cognitive decline with greater vulnerability in males.


Assuntos
Disfunção Cognitiva , Modelos Animais de Doenças , Camundongos Transgênicos , Prosencéfalo , Sinapses , Proteínas tau , Animais , Proteínas tau/metabolismo , Masculino , Feminino , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Sinapses/metabolismo , Sinapses/patologia , Camundongos , Prosencéfalo/metabolismo , Caracteres Sexuais , Tauopatias/metabolismo , Tauopatias/patologia , Transtornos do Sono-Vigília/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Camundongos Endogâmicos C57BL
2.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38543105

RESUMO

Sleep disruption is an expected component of aging and neurodegenerative conditions, including Alzheimer's disease (AD). Sleep disruption has been demonstrated as a driver of AD pathology and cognitive decline. Therefore, treatments designed to maintain sleep may be effective in slowing or halting AD progression. However, commonly used sleep aid medications are associated with an increased risk of AD, highlighting the need for sleep aids with novel mechanisms of action. The endocannabinoid system holds promise as a potentially effective and novel sleep-enhancing target. By using pharmacology and genetic knockout strategies, we evaluated fatty acid amide hydrolase (FAAH) as a therapeutic target to improve sleep and halt disease progression in a transgenic Tau P301S (PS19) model of Tauopathy and AD. We have recently shown that PS19 mice exhibit sleep disruption in the form of dark phase hyperarousal as an early symptom that precedes robust Tau pathology and cognitive decline. Acute FAAH inhibition with PF3845 resulted in immediate improvements in sleep behaviors in male and female PS19 mice, supporting FAAH as a potentially suitable sleep-promoting target. Moreover, sustained drug dosing for 5-10 days resulted in maintained improvements in sleep. To evaluate the effect of chronic FAAH inhibition as a possible therapeutic strategy, we generated FAAH-/- PS19 mice models. Counter to our expectations, FAAH knockout did not protect PS19 mice from progressive sleep loss, neuroinflammation, or cognitive decline. Our results provide support for FAAH as a novel target for sleep-promoting therapies but further indicate that the complete loss of FAAH activity may be detrimental.

3.
Mol Biol Cell ; 35(5): ar67, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38507236

RESUMO

During neuronal development, dynamic filopodia emerge from dendrites and mature into functional dendritic spines during synaptogenesis. Dendritic filopodia and spines respond to extracellular cues, influencing dendritic spine shape and size as well as synaptic function. Previously, the E3 ubiquitin ligase TRIM9 was shown to regulate filopodia in early stages of neuronal development, including netrin-1-dependent axon guidance and branching. Here, we demonstrate that TRIM9 also localizes to dendritic filopodia and spines of murine cortical and hippocampal neurons during synaptogenesis and is required for synaptic responses to netrin. In particular, TRIM9 is enriched in the postsynaptic density (PSD) within dendritic spines and loss of Trim9 alters the PSD proteome, including the actin cytoskeleton landscape. While netrin exposure induces accumulation of the Arp2/3 complex and filamentous actin in dendritic spine heads, this response is disrupted by genetic deletion of Trim9. In addition, we document changes in the synaptic receptors associated with loss of Trim9. These defects converge on a loss of netrin-dependent increases in neuronal firing rates, indicating TRIM9 is required downstream of synaptic netrin-1 signaling. We propose that TRIM9 regulates cytoskeletal dynamics in dendritic spines and is required for the proper response to synaptic stimuli.


Assuntos
Actinas , Ubiquitina-Proteína Ligases , Camundongos , Animais , Actinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Netrina-1 , Neurônios/metabolismo , Hipocampo/metabolismo , Espinhas Dendríticas/metabolismo , Proteínas do Tecido Nervoso/metabolismo
4.
bioRxiv ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38260647

RESUMO

During neuronal development, dynamic filopodia emerge from dendrites and mature into functional dendritic spines during synaptogenesis. Dendritic filopodia and spines respond to extracellular cues, influencing dendritic spine shape and size as well as synaptic function. Previously, the E3 ubiquitin ligase TRIM9 was shown to regulate filopodia in early stages of neuronal development, including netrin-1 dependent axon guidance and branching. Here we demonstrate TRIM9 also localizes to dendritic filopodia and spines of murine cortical and hippocampal neurons during synaptogenesis and is required for synaptic responses to netrin. In particular, TRIM9 is enriched in the post-synaptic density (PSD) within dendritic spines and loss of Trim9 alters the PSD proteome, including the actin cytoskeleton landscape. While netrin exposure induces accumulation of the Arp2/3 complex and filamentous actin in dendritic spine heads, this response is disrupted by genetic deletion of Trim9. In addition, we document changes in the synaptic receptors associated with loss of Trim9. These defects converge on a loss of netrin-dependent increases in neuronal firing rates, indicating TRIM9 is required downstream of synaptic netrin-1 signaling. We propose TRIM9 regulates cytoskeletal dynamics in dendritic spines and is required for the proper response to synaptic stimuli.

5.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986967

RESUMO

Sleep is an essential behavior that supports lifelong brain health and cognition. Neuronal synapses are a major target for restorative sleep function and a locus of dysfunction in response to sleep deprivation (SD). Synapse density is highly dynamic during development, becoming stabilized with maturation to adulthood, suggesting sleep exerts distinct synaptic functions between development and adulthood. Importantly, problems with sleep are common in neurodevelopmental disorders including autism spectrum disorder (ASD). Moreover, early life sleep disruption in animal models causes long lasting changes in adult behavior. Different plasticity engaged during sleep necessarily implies that developing and adult synapses will show differential vulnerability to SD. To investigate distinct sleep functions and mechanisms of vulnerability to SD across development, we systematically examined the behavioral and molecular responses to acute SD between juvenile (P21-28), adolescent (P42-49) and adult (P70-100) mice of both sexes. Compared to adults, juveniles lack robust adaptations to SD, precipitating cognitive deficits in the novel object recognition test. Subcellular fractionation, combined with proteome and phosphoproteome analysis revealed the developing synapse is profoundly vulnerable to SD, whereas adults exhibit comparative resilience. SD in juveniles, and not older mice, aberrantly drives induction of synapse potentiation, synaptogenesis, and expression of peri-neuronal nets. Our analysis further reveals the developing synapse as a convergent node between vulnerability to SD and ASD genetic risk. Together, our systematic analysis supports a distinct developmental function of sleep and reveals how sleep disruption impacts key aspects of brain development, providing mechanistic insights for ASD susceptibility.

6.
bioRxiv ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333395

RESUMO

Background: Sleep is an essential process that supports brain health and cognitive function in part through the modification of neuronal synapses. Sleep disruption, and impaired synaptic processes, are common features in neurodegenerative diseases, including Alzheimer's disease (AD). However, the casual role of sleep disruption in disease progression is not clear. Neurofibrillary tangles, made from hyperphosphorylated and aggregated Tau protein, form one of the major hallmark pathologies seen in AD and contribute to cognitive decline, synapse loss and neuronal death.Tau has been shown to aggregate in synapses which may impair restorative synapse processes occurring during sleep. However, it remains unclear how sleep disruption and synaptic Tau pathology interact to drive cognitive decline. It is also unclear whether the sexes show differential vulnerability to the effects of sleep loss in the context of neurodegeneration. Methods: We used a piezoelectric home-cage monitoring system to measure sleep behavior in 3-11month-old transgenic hTau P301S Tauopathy model mice (PS19) and littermate controls of both sexes. Subcellular fractionation and Western blot was used to examine Tau pathology in mouse forebrain synapse fractions. To examine the role of sleep disruption in disease progression, mice were exposed to acute or chronic sleep disruption. The Morris water maze test was used to measure spatial learning and memory performance. Results: PS19 mice exhibited a selective loss of sleep during the dark phase, referred to as hyperarousal, as an early symptom with an onset of 3months in females and 6months in males. At 6months, forebrain synaptic Tau burden did not correlate with sleep measures and was not affected by acute or chronic sleep disruption. Chronic sleep disruption accelerated the onset of decline of hippocampal spatial memory in PS19 males, but not females. Conclusions: Dark phase hyperarousal is an early symptom in PS19 mice that precedes robust Tau aggregation. We find no evidence that sleep disruption is a direct driver of Tau pathology in the forebrain synapse. However, sleep disruption synergized with Tau pathology to accelerate the onset of cognitive decline in males. Despite the finding that hyperarousal appears earlier in females, female cognition was resilient to the effects of sleep disruption.

7.
iScience ; 26(6): 106905, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37305696

RESUMO

Tau-mediated toxicity is associated with cognitive decline and Alzheimer's disease (AD) progression. In particular, tau post-translational modifications (PTMs) are thought to generate aberrant tau species resulting in neuronal dysfunction. Despite being well characterized in postmortem AD brain, it is unclear how caspase-mediated C-terminal tau cleavage promotes neurodegeneration, as few studies have developed the models to dissect this pathogenic mechanism. Here, we show that proteasome impairment results in cleaved tau accumulation at the post-synaptic density (PSD), a process that is modulated by neuronal activity. Cleaved tau (at residue D421) impairs neuronal firing and causes inefficient initiation of network bursts, consistent with reduced excitatory drive. We propose that reduced neuronal activity, or silencing, is coupled to proteasome dysfunction, which drives cleaved tau accumulation at the PSD and subsequent synaptotoxicity. Our study connects three common themes in the progression of AD: impaired proteostasis, caspase-mediated tau cleavage, and synapse degeneration.

8.
Behav Brain Res ; 448: 114441, 2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37075956

RESUMO

Opioid misuse has dramatically increased over the last few decades resulting in many people suffering from opioid use disorder (OUD). The prevalence of opioid overdose has been driven by the development of new synthetic opioids, increased availability of prescription opioids, and more recently, the COVID-19 pandemic. Coinciding with increases in exposure to opioids, the United States has also observed increases in multiple Narcan (naloxone) administrations as a life-saving measures for respiratory depression, and, thus, consequently, naloxone-precipitated withdrawal. Sleep dysregulation is a main symptom of OUD and opioid withdrawal syndrome, and therefore, should be a key facet of animal models of OUD. Here we examine the effect of precipitated and spontaneous morphine withdrawal on sleep behaviors in C57BL/6 J mice. We find that morphine administration and withdrawal dysregulate sleep, but not equally across morphine exposure paradigms. Furthermore, many environmental triggers promote relapse to drug-seeking/taking behavior, and the stress of disrupted sleep may fall into that category. We find that sleep deprivation dysregulates sleep in mice that had previous opioid withdrawal experience. Our data suggest that the 3-day precipitated withdrawal paradigm has the most profound effects on opioid-induced sleep dysregulation and further validates the construct of this model for opioid dependence and OUD.


Assuntos
COVID-19 , Dependência de Morfina , Transtornos Relacionados ao Uso de Opioides , Síndrome de Abstinência a Substâncias , Masculino , Feminino , Camundongos , Animais , Humanos , Morfina/efeitos adversos , Analgésicos Opioides/farmacologia , Camundongos Endogâmicos C57BL , Antagonistas de Entorpecentes/farmacologia , Antagonistas de Entorpecentes/uso terapêutico , Pandemias , Naloxona/farmacologia , Naloxona/uso terapêutico , Entorpecentes/efeitos adversos , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Sono , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Dependência de Morfina/tratamento farmacológico
9.
Neurobiol Stress ; 22: 100512, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36632309

RESUMO

Sleep is a conserved and essential process that supports learning and memory. Synapses are a major target of sleep function and a locus of sleep need. Evidence in the literature suggests that the need for sleep has a cellular or microcircuit level basis, and that sleep need can accumulate within localized brain regions as a function of waking activity. Activation of sleep promoting kinases and accumulation of synaptic phosphorylation was recently shown to be part of the molecular basis for the localized sleep need. A prominent hypothesis in the field suggests that some benefits of sleep are mediated by a broad but selective weakening, or scaling-down, of synaptic strength during sleep in order to offset increased excitability from synaptic potentiation during wake. The literature also shows that synapses can be strengthened during sleep, raising the question of what molecular mechanisms may allow for selection of synaptic plasticity types during sleep. Here I describe mechanisms of action of the scaling factors Arc and Homer1a in selective plasticity and links with sleep need. Arc and Homer1a are induced in neurons in response to waking neuronal activity and accumulate with time spent awake. I suggest that during sleep, Arc and Homer1a drive broad weakening of synapses through homeostatic scaling-down, but in a manner that is sensitive to the plasticity history of individual synapses, based on patterned phosphorylation of synaptic proteins. Therefore, Arc and Homer1a may offer insights into the intricate links between a cellular basis of sleep need and memory consolidation during sleep.

10.
eNeuro ; 9(6)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36316118

RESUMO

Neurons express overlapping homeostatic mechanisms to regulate synaptic function and network properties in response to perturbations of neuronal activity. Endocannabinoids (eCBs) are bioactive lipids synthesized in the postsynaptic compartments to regulate synaptic transmission, plasticity, and neuronal excitability primarily through retrograde activation of presynaptic cannabinoid receptor type 1 (CB1). The eCB system is well situated to regulate neuronal network properties and coordinate presynaptic and postsynaptic activity. However, the role of the eCB system in homeostatic adaptations to neuronal hyperactivity is unknown. To address this issue, we used Western blotting and targeted lipidomics to measure adaptations in eCB system to bicuculline (BCC)-induced chronic hyperexcitation in mature cultured rat cortical neurons, and used multielectrode array (MEA) recording and live-cell imaging of glutamate dynamics to test the effects of pharmacological manipulations of eCB on network activities. We show that BCC-induced chronic hyperexcitation triggers homeostatic downscaling and a coordinated adaptation to enhance tonic eCB signaling. Hyperexcitation triggers first the downregulation of fatty acid amide hydrolase (FAAH), the lipase that degrades the eCB anandamide, then an accumulation of anandamide and related metabolites, and finally a delayed upregulation of surface and total CB1. Additionally, we show that BCC-induced downregulation of surface AMPA-type glutamate receptors (AMPARs) and upregulation of CB1 occur through independent mechanisms. Finally, we show that endocannabinoids support baseline network activities before and after downscaling and is engaged to suppress network activity during adaptation to hyperexcitation. We discuss the implications of our findings in the context of downscaling and homeostatic regulation of in vitro oscillatory network activities.


Assuntos
Ácidos Araquidônicos , Endocanabinoides , Animais , Ratos , Endocanabinoides/metabolismo , Receptores de Canabinoides , Ácidos Araquidônicos/farmacologia , Alcamidas Poli-Insaturadas , Ácido Glutâmico , Receptor CB1 de Canabinoide , Moduladores de Receptores de Canabinoides/farmacologia
11.
Mol Autism ; 13(1): 35, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038911

RESUMO

BACKGROUND: Patients with autism spectrum disorder (ASD) experience high rates of sleep disruption beginning early in life; however, the developmental consequences of this disruption are not understood. We examined sleep behavior and the consequences of sleep disruption in developing mice bearing C-terminal truncation mutation in the high-confidence ASD risk gene SHANK3 (Shank3ΔC). We hypothesized that sleep disruption may be an early sign of developmental divergence, and that clinically relevant Shank3WT/ΔC mice may be at increased risk of lasting deleterious outcomes following early life sleep disruption. METHODS: We recorded sleep behavior in developing Shank3ΔC/ΔC, Shank3WT/ΔC, and wild-type siblings of both sexes using a noninvasive home-cage monitoring system. Separately, litters of Shank3WT/ΔC and wild-type littermates were exposed to automated mechanical sleep disruption for 7 days prior to weaning (early life sleep disruption: ELSD) or post-adolescence (PASD) or undisturbed control (CON) conditions. All groups underwent standard behavioral testing as adults. RESULTS: Male and female Shank3ΔC/ΔC mice slept significantly less than wild-type and Shank3WT/ΔC siblings shortly after weaning, with increasing sleep fragmentation in adolescence, indicating that sleep disruption has a developmental onset in this ASD model. ELSD treatment interacted with genetic vulnerability in Shank3WT/ΔC mice, resulting in lasting, sex-specific changes in behavior, whereas wild-type siblings were largely resilient to these effects. Male ELSD Shank3WT/ΔC subjects demonstrated significant changes in sociability, sensory processing, and locomotion, while female ELSD Shank3WT/ΔC subjects had a significant reduction in risk aversion. CON Shank3WT/ΔC mice, PASD mice, and all wild-type mice demonstrated typical behavioral responses in most tests. LIMITATIONS: This study tested the interaction between developmental sleep disruption and genetic vulnerability using a single ASD mouse model: Shank3ΔC (deletion of exon 21). The broader implications of this work should be supported by additional studies using ASD model mice with distinct genetic vulnerabilities. CONCLUSION: Our study shows that sleep disruption during sensitive periods of early life interacts with underlying genetic vulnerability to drive lasting and sex-specific changes in behavior. As individuals progress through maturation, they gain resilience to the lasting effects of sleep disruption. This work highlights developmental sleep disruption as an important vulnerability in ASD susceptibility.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/genética , Sono
12.
Sleep ; 45(8)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35395682

RESUMO

Sleep is an essential behavior that supports brain function and cognition throughout life, in part by acting on neuronal synapses. The synaptic signaling pathways that mediate the restorative benefits of sleep are not fully understood, particularly in the context of development. Endocannabinoids (eCBs) including 2-arachidonyl glycerol (2-AG) and anandamide (AEA), are bioactive lipids that activate cannabinoid receptor, CB1, to regulate synaptic transmission and mediate cognitive functions and many behaviors, including sleep. We used targeted mass spectrometry to measure changes in forebrain synaptic eCBs during the sleep/wake cycle in juvenile and adolescent mice of both sexes. We find that eCBs lack a daily rhythm in juvenile mice, while in adolescents AEA and related oleoyl ethanolamide are increased during the sleep phase in a circadian manner. Next, we manipulated the eCB system using selective pharmacology and measured the effects on sleep behavior in developing and adult mice of both sexes using a noninvasive piezoelectric home-cage recording apparatus. Enhancement of eCB signaling through inhibition of 2-AG or AEA degradation, increased dark-phase sleep amount and bout length in developing and adult males, but not in females. Inhibition of CB1 by injection of the antagonist AM251 reduced sleep time and caused sleep fragmentation in developing and adult males and females. Our data suggest that males are more sensitive to the sleep-promoting effects of enhanced eCBs but that tonic eCB signaling supports sleep behavior through multiple stages of development in both sexes. This work informs the further development of cannabinoid-based therapeutics for sleep disruption.


Assuntos
Endocanabinoides , Sinapses , Animais , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Feminino , Masculino , Camundongos , Transdução de Sinais , Sono , Sinapses/fisiologia , Transmissão Sináptica
13.
J Neurosci ; 41(45): 9466-9481, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34642214

RESUMO

TSNARE1, which encodes the protein tSNARE1, is a high-confidence gene candidate for schizophrenia risk, but nothing is known about its cellular or physiological function. We identified the major gene products of TSNARE1 and their cytoplasmic localization and function in endosomal trafficking in cortical neurons. We validated three primary isoforms of TSNARE1 expressed in human brain, all of which encode a syntaxin-like Qa SNARE domain. RNA-sequencing data from adult and fetal human brain suggested that the majority of tSNARE1 lacks a transmembrane domain that is thought to be necessary for membrane fusion. Biochemical data demonstrate that tSNARE1 can compete with Stx12 for incorporation into an endosomal SNARE complex, supporting its possible role as an inhibitory SNARE. Live-cell imaging in cortical neurons from mice of both sexes demonstrated that brain tSNARE1 isoforms localized to the endosomal network. The most abundant brain isoform, tSNARE1c, localized most frequently to Rab7+ late endosomes, and endogenous tSNARE1 displayed a similar localization in human neural progenitor cells and neuroblastoma cells. In mature rat neurons from both sexes, tSNARE1 localized to the dendritic shaft and dendritic spines, supporting a role for tSNARE1 at the postsynapse. Expression of either tSNARE1b or tSNARE1c, which differ only in their inclusion or exclusion of an Myb-like domain, delayed the trafficking of the dendritic endosomal cargo Nsg1 into late endosomal and lysosomal compartments. These data suggest that tSNARE1 regulates endosomal trafficking in cortical neurons, likely by negatively regulating early endosomal to late endosomal trafficking.SIGNIFICANCE STATEMENT Schizophrenia is a severe and polygenic neuropsychiatric disorder. Understanding the functions of high-confidence candidate genes is critical toward understanding how their dysfunction contributes to schizophrenia pathogenesis. TSNARE1 is one of the high-confidence candidate genes for schizophrenia risk, yet nothing was known about its cellular or physiological function. Here we describe the major isoforms of TSNARE1 and their cytoplasmic localization and function in the endosomal network in cortical neurons. Our results are consistent with the hypothesis that the majority of brain tSNARE1 acts as a negative regulator to endolysosomal trafficking.


Assuntos
Córtex Cerebral/metabolismo , Endossomos/metabolismo , Neurônios/metabolismo , Proteínas SNARE/metabolismo , Esquizofrenia/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/metabolismo , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley
14.
Genes Brain Behav ; 19(3): e12570, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30985063

RESUMO

Genome-wide association studies linked diacylglycerol kinase eta and iota to mood disorders, including bipolar disorder and schizophrenia, and both genes are expressed throughout the brain. Here, we generated and behaviorally characterized female mice lacking Dgkh alone, Dgki alone, and double Dgkh/Dgki-knockout (dKO) mice. We found that fewer than 30% of newborn pups raised by dKO females survived to weaning, while over 85% of pups survived to weaning when raised by wild-type (WT) females. Poor survival under the care of dKO mothers was unrelated to pup genotype. Moreover, pups from dKO dams survived when fostered by WT dams, suggesting the poor survival rate of dKO-raised litters was related to impaired maternal care by dKO dams. Nest building was similar between WT and dKO dams; however, some dKO females failed to retrieve any pups in a retrieval assay. Pups raised by dKO dams had smaller or absent milk spots and reduced weight, indicative of impaired nursing. Unlike WT females, postpartum dKO females showed erratic, panicked responses to cage disturbances. Virgin dKO females showed behavioral signs of anxiety and mania, which were not seen in mice lacking either Dgkh or Dgki alone. Our research indicates that combined deletion of Dgkh and Dgki impairs maternal behavior in the early postpartum period, and suggests female dKO mice model symptoms of mania and anxiety.


Assuntos
Ansiedade/genética , Transtorno Bipolar/genética , Diacilglicerol Quinase/genética , Comportamento Materno , Animais , Ansiedade/fisiopatologia , Transtorno Bipolar/fisiopatologia , Diacilglicerol Quinase/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL
15.
Yale J Biol Med ; 92(1): 93-101, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30923476

RESUMO

Sleep is an essential physiological behavior that promotes cognitive development and function. Although the switch between sleep/wake cycles is controlled by specific neural circuits, sleep need and the restorative benefits of sleep are likely controlled by cellular mechanisms localized in critical areas of the brain involved in learning and memory including the cortex and hippocampus. However, the molecular basis for the restorative function(s) of sleep that support cognition, or for the homeostatic build-up of sleep need are poorly understood. Synapses undergo local and global changes in strength to support learning and memory and are likely a point of restoration during sleep. Homer1a and mGluR1/5, recently implicated in sleep function, are molecules involved in the scaling down process that weakens synapses during sleep to restore synapse homeostasis. During wake, long-form Homer proteins tether mGluR1/5 to IP3R and to the post-synaptic density (PSD). During sleep, short-form Homer1a uncouples mGluR1/5 from IP3R leaving mGluR1/5 open to interact with other effectors, switching mGluR1/5 signaling from "awake-type" to "sleep-type" signaling modes. Importantly, mGluR1/5 have been implicated in several neurological and neurodevelopmental disorders such as Alzheimer's disease (AD) and autism spectrum disorder (ASD), all of which show abnormal sleep phenotypes, linking sleep, disease, and mGluR1/5 signaling. Further investigation into the downstream effectors of mGluR1/5 and sleep/wake signaling will lead to more targeted therapeutic interventions.


Assuntos
Homeostase/fisiologia , Proteínas de Arcabouço Homer/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais , Sono/fisiologia , Animais , Humanos , Plasticidade Neuronal
16.
Neuron ; 100(2): 314-329, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30359599

RESUMO

Changes in the properties and postsynaptic abundance of AMPA-type glutamate receptors (AMPARs) are major mechanisms underlying various forms of synaptic plasticity, including long-term potentiation (LTP), long-term depression (LTD), and homeostatic scaling. The function and the trafficking of AMPARs to and from synapses is modulated by specific AMPAR GluA1-GluA4 subunits, subunit-specific protein interactors, auxiliary subunits, and posttranslational modifications. Layers of regulation are added to AMPAR tetramers through these different interactions and modifications, increasing the computational power of synapses. Here we review the reliance of synaptic plasticity on AMPAR variants and propose "the AMPAR code" as a conceptual framework. The AMPAR code suggests that AMPAR variants will be predictive of the types and extent of synaptic plasticity that can occur and that a hierarchy exists such that certain AMPARs will be disproportionally recruited to synapses during LTP/homeostatic scaling up, or removed during LTD/homeostatic scaling down.


Assuntos
Encéfalo/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de AMPA/fisiologia , Animais , Humanos , Sinapses/fisiologia
17.
Proc Natl Acad Sci U S A ; 115(16): E3827-E3836, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610302

RESUMO

Memory formation is believed to result from changes in synapse strength and structure. While memories may persist for the lifetime of an organism, the proteins and lipids that make up synapses undergo constant turnover with lifetimes from minutes to days. The molecular basis for memory maintenance may rely on a subset of long-lived proteins (LLPs). While it is known that LLPs exist, whether such proteins are present at synapses is unknown. We performed an unbiased screen using metabolic pulse-chase labeling in vivo in mice and in vitro in cultured neurons combined with quantitative proteomics. We identified synaptic LLPs with half-lives of several months or longer. Proteins in synaptic fractions generally exhibited longer lifetimes than proteins in cytosolic fractions. Protein turnover was sensitive to pharmacological manipulations of activity in neuronal cultures or in mice exposed to an enriched environment. We show that synapses contain LLPs that may underlie stabile long-lasting changes in synaptic structure and function.


Assuntos
Memória/fisiologia , Sinapses/metabolismo , Sinaptossomos/metabolismo , Animais , Citosol/metabolismo , Meia-Vida , Aprendizagem/fisiologia , Espectrometria de Massas , Camundongos , Plasticidade Neuronal , Proteínas/metabolismo , Proteólise , Proteômica/métodos
19.
Science ; 355(6324): 511-515, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28154077

RESUMO

Sleep is an essential process that supports learning and memory by acting on synapses through poorly understood molecular mechanisms. Using biochemistry, proteomics, and imaging in mice, we find that during sleep, synapses undergo widespread alterations in composition and signaling, including weakening of synapses through removal and dephosphorylation of synaptic AMPA-type glutamate receptors. These changes are driven by the immediate early gene Homer1a and signaling from group I metabotropic glutamate receptors mGluR1/5. Homer1a serves as a molecular integrator of arousal and sleep need via the wake- and sleep-promoting neuromodulators, noradrenaline and adenosine, respectively. Our data suggest that homeostatic scaling-down, a global form of synaptic plasticity, is active during sleep to remodel synapses and participates in the consolidation of contextual memory.


Assuntos
Proteínas de Arcabouço Homer/fisiologia , Sono/fisiologia , Sinapses/fisiologia , Vigília/fisiologia , Adenosina/farmacologia , Animais , Contagem de Células , Células Cultivadas , Cognição/fisiologia , Homeostase , Proteínas de Arcabouço Homer/genética , Aprendizagem/fisiologia , Camundongos , Neurônios/fisiologia , Neurônios/ultraestrutura , Norepinefrina/farmacologia , Prosencéfalo/citologia , Prosencéfalo/fisiologia , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sono/efeitos dos fármacos , Vigília/efeitos dos fármacos
20.
Proc Natl Acad Sci U S A ; 113(33): E4920-7, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27482106

RESUMO

Regulation of AMPA receptor (AMPAR) function is a fundamental mechanism controlling synaptic strength during long-term potentiation/depression and homeostatic scaling. AMPAR function and membrane trafficking is controlled by protein-protein interactions, as well as by posttranslational modifications. Phosphorylation of the GluA1 AMPAR subunit at S845 and S831 play especially important roles during synaptic plasticity. Recent controversy has emerged regarding the extent to which GluA1 phosphorylation may contribute to synaptic plasticity. Here we used a variety of methods to measure the population of phosphorylated GluA1-containing AMPARs in cultured primary neurons and mouse forebrain. Phosphorylated GluA1 represents large fractions from 12% to 50% of the total population under basal and stimulated conditions in vitro and in vivo. Furthermore, a large fraction of synapses are positive for phospho-GluA1-containing AMPARs. Our results support the large body of research indicating a prominent role of GluA1 phosphorylation in synaptic plasticity.


Assuntos
Neurônios/metabolismo , Receptores de AMPA/metabolismo , Animais , Potenciação de Longa Duração , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Plasticidade Neuronal , Fosforilação , Prosencéfalo/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...