Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 15(1): 21-36, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23042160

RESUMO

In this perspective we discuss the roles of hot spots in surface-enhanced Raman spectroscopy (SERS). After giving background and defining the hot spot, we evaluate a variety of SERS substrates which often contain hot spots. We compare and discuss the differentiating properties of each substrate. We then provide a thorough analysis of the hot spot contribution to the observed SERS signal both in ensemble-averaged and single-molecule conditions. We also enumerate rules for determining the SERS enhancement factor (EF) to clarify the use of this common metric. Finally, we present a forward-looking overview of applications and uses of hot spots for controlling chemistry on the nanoscale. Although not exhaustive, this perspective is a review of some of the most interesting and promising methodologies for creating, controlling, and using hot spots for electromagnetic amplification.

2.
J Am Chem Soc ; 131(2): 849-54, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19140802

RESUMO

The surface-enhanced Raman excitation profiles (REPs) of rhodamine 6G (R6G) on Ag surfaces are studied using a tunable optical parametric oscillator excitation source and versatile detection scheme. These experiments afford the ability to finely tune the excitation wavelength near the molecular resonance of R6G (i.e., approximately 500-575 nm) and perform wavelength-scanned surface-enhanced Raman excitation measurements of a single molecule. The ensemble-averaged surface-enhanced REPs are measured for collections of molecules on Ag island films. The relative contributions of the 0-0 and 0-1 vibronic transitions to the surface-enhanced REPs vary with vibrational frequency. These results highlight the role of excitation energy in determining the resonance Raman intensities for R6G on surface-enhancing nanostructures. Single-molecule measurements are obtained from individual molecules of R6G on Ag colloidal aggregates, where single-molecule junctions are located using the isotope-edited approach. Overall, single-molecule surface-enhanced REPs are narrow in comparison to the ensemble-averaged excitation profiles due to a reduction in inhomogeneous broadening. This work describes the first Raman excitation spectroscopy studies of a single molecule, revealing new information previously obscured by the ensemble.

3.
J Am Chem Soc ; 130(38): 12616-7, 2008 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-18761451

RESUMO

We present here a detailed study of the specific nanoparticle structures that give rise to single-molecule surface-enhanced Raman scattering (SMSERS). A variety of structures are observed, but the simplest are dimers of Ag nanocrystals. We chose one of these structures for detailed study using electrodynamics calculations and found that the electromagnetic SERS enhancement factors of 10(9) are easily obtained and are consistent with single-molecule SERS activity.

4.
Acc Chem Res ; 41(12): 1653-61, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18630932

RESUMO

After its discovery more than 30 years ago, surface-enhanced Raman spectroscopy (SERS) was expected to have major impact as a sensitive analytical technique and tool for fundamental studies of surface species. Unfortunately, the lack of reliable and reproducible fabrication methods limited its applicability. In recent years, SERS has enjoyed a renaissance, and there is renewed interest in both the fundamentals and applications of SERS. New techniques for nanofabrication, the design of substrates that maximize the electromagnetic enhancement, and the discovery of single-molecule SERS are driving the resurgence of this field. This Account highlights our group's recent work on SERS. Initially, we discuss SERS substrates that have shown proven reproducibility, stability, and large field enhancement. These substrates enable many analytical applications, such as anthrax detection, chemical warfare agent stimulant detection, and in vitro and in vivo glucose sensing. We then turn to a detailed study of the wavelength and distance dependence of SERS, which further illustrate predictions obtained from the electromagnetic enhancement mechanism. Last, an isotopic labeling technique applied to the rhodamine 6G (R6G)/silver system serves as an additional proof of the existence of single-molecule SERS and explores the dynamical features of this process. This work, in conjunction with theoretical calculations, allows us to comment on the possible role of charge transfer in the R6G/silver system.

5.
Artigo em Inglês | MEDLINE | ID: mdl-20636091

RESUMO

The ability to control the size, shape, and material of a surface has reinvigorated the field of surface-enhanced Raman spectroscopy (SERS). Because excitation of the localized surface plasmon resonance of a nanostructured surface or nanoparticle lies at the heart of SERS, the ability to reliably control the surface characteristics has taken SERS from an interesting surface phenomenon to a rapidly developing analytical tool. This article first explains many fundamental features of SERS and then describes the use of nanosphere lithography for the fabrication of highly reproducible and robust SERS substrates. In particular, we review metal film over nanosphere surfaces as excellent candidates for several experiments that were once impossible with more primitive SERS substrates (e.g., metal island films). The article also describes progress in applying SERS to the detection of chemical warfare agents and several biological molecules.


Assuntos
Nanotecnologia/métodos , Análise Espectral Raman/métodos , Animais , Substâncias para a Guerra Química/análise , Ciclotrons , Fenômenos Eletromagnéticos , Humanos , Íons , Metais , Modelos Químicos , Nanopartículas/química , Espalhamento de Radiação , Ressonância de Plasmônio de Superfície/métodos , Propriedades de Superfície
6.
J Am Chem Soc ; 129(51): 16249-56, 2007 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18052068

RESUMO

The existence of single-molecule surface-enhanced Raman spectroscopy (SMSERS) is proven by employing a frequency-domain approach. This is demonstrated using two isotopologues of Rhodamine 6G that offer unique vibrational signatures. When an average of one molecule was adsorbed per silver nanoparticle, only one isotopologue was typically observed under dry N2 environment. Additionally, the distribution of vibrational frequencies hidden under the ensemble average is revealed by examining the single-molecule spectra. Correlation with transmission electron microscopy reveals that SMSERS active aggregates are composed of multiple randomly sized and shaped nanoparticles. At higher coverage and in a humid environment, adsorbate interchange was detected. Using 2D cross correlation, vibrational modes from different isotopologues were anti-correlated, indicating that the dynamic behavior was from multiple molecules competing for a single hot spot. This allows hot-spot diffusion to be directly observed without analyzing the peak intensity fluctuations.

7.
Faraday Discuss ; 132: 9-26, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16833104

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is currently experiencing a renaissance in its development driven by the remarkable discovery of single molecule SERS (SMSERS) and the explosion of interest in nanophotonics and plasmonics. Because excitation of the localized surface plasmon resonance (LSPR) of a nanostructured surface or nanoparticle lies at the heart of SERS, it is important to control all of the factors influencing the LSPR in order to maximize signal strength and ensure reproducibility. These factors include material, size, shape, interparticle spacing, and dielectric environment. All of these factors must be carefully controlled to ensure that the incident laser light maximally excites the LSPR in a reproducible manner. This article describes the use of nanosphere lithography for the fabrication of highly reproducible and robust SERS substrates for both fundamental studies and applications. Atomic layer deposition (ALD) is introduced as a novel fabrication method for dielectric spacers to study the SERS distance dependence and control the nanoscale dielectric environment. Wavelength scanned SER excitation spectroscopy (WS SERES) measurements show that enhancement factors approximately 10(8) are obtainable from NSL-fabricated surfaces and provide new insight into the electromagneticfield enhancement mechanism. Tip-enhanced Raman spectroscopy (TERS) is an extremely promising new development to improve the generality and information content of SERS. A 2D correlation analysis is applied to SMSERS data. Finally, the first in vivo SERS glucose sensing study is presented.


Assuntos
Análise Espectral Raman , Técnicas Biossensoriais/instrumentação , Glucose/análise , Nanopartículas , Nanotubos , Análise Espectral Raman/instrumentação , Análise Espectral Raman/métodos , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
8.
J Phys Chem B ; 109(22): 11279-85, 2005 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-16852377

RESUMO

A detailed wavelength-scanned surface-enhanced Raman excitation spectroscopy (WS SERES) study of benzenethiol adsorbed on Ag nanoparticle arrays, fabricated by nanosphere lithography (NSL), is presented. These NSL-derived Ag nanoparticle array surfaces are both structurally well-characterized and extremely uniform in size. The WS SERES spectra are correlated, both spatially and spectrally, with the corresponding localized surface plasmon resonance (LSPR) spectra of the nanoparticle arrays. The surface-enhanced Raman scattering (SERS) spectra were measured in two excitation wavelength ranges: (1) 425-505 nm, and (2) 610-800 nm, as well as with the 532-nm line from a solid-state diode-pumped laser. The WS SERES spectra have line shapes similar to those of the LSPR spectra. The maximum SERS enhancement factor is shown to occur for excitation wavelengths that are blue-shifted with respect to the LSPR lambda(max) of adsorbate-covered nanoparticle arrays. Three vibrational modes of benzenethiol (1575, 1081, and 1009 cm(-1)) are studied simultaneously on one substrate, and it is demonstrated that the smaller Raman shifted peak shows a maximum enhancement closer to the LSPR lambda(max) than that of a larger Raman shifted peak. This is in agreement with the predictions of the electromagnetic (EM) enhancement mechanism of SERS. Enhancement factors of up to approximately 10(8) are achieved, which is also in good agreement with our previous SERES studies.


Assuntos
Análise Espectral Raman/métodos , Cicloexanos/química , Campos Eletromagnéticos , Microesferas , Nanopartículas , Fenóis/química , Fótons , Análise Espectral Raman/instrumentação , Compostos de Sulfidrila/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...