Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 80: 45-65, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37683719

RESUMO

DHA is a marine PUFA of commercial value, given its multiple health benefits. The worldwide emerging shortage in DHA supply has increased interest in microbial cell factories that can provide the compound de novo. In this regard, the present work aimed to improve DHA production in the oleaginous yeast strain Y. lipolytica Af4, which synthetized the PUFA via a heterologous myxobacterial polyketide synthase (PKS)-like gene cluster. As starting point, we used transcriptomics, metabolomics, and 13C-based metabolic pathway profiling to study the cellular dynamics of Y. lipolytica Af4. The shift from the growth to the stationary DHA-production phase was associated with fundamental changes in carbon core metabolism, including a strong upregulation of the PUFA gene cluster, as well as an increase in citrate and fatty acid degradation. At the same time, the intracellular levels of the two DHA precursors acetyl-CoA and malonyl-CoA dropped by up to 98% into the picomolar range. Interestingly, the degradation pathways for the ketogenic amino acids l-lysine, l-leucine, and l-isoleucine were transcriptionally activated, presumably to provide extra acetyl-CoA. Supplementation with small amounts of these amino acids at the beginning of the DHA production phase beneficially increased the intracellular CoA-ester pools and boosted the DHA titer by almost 40%. Isotopic 13C-tracer studies revealed that the supplements were efficiently directed toward intracellular CoA-esters and DHA. Hereby, l-lysine was found to be most efficient, as it enabled long-term activation, due to storage within the vacuole and continuous breakdown. The novel strategy enabled DHA production in Y. lipolytica at the gram scale for the first time. DHA was produced at a high selectivity (27% of total fatty acids) and free of the structurally similar PUFA DPA, which facilitates purification for high-value medical applications that require API-grade DHA. The assembled multi-omics picture of the central metabolism of Y. lipolytica provides valuable insights into this important yeast. Beyond our work, the enhanced catabolism of ketogenic amino acids seems promising for the overproduction of other compounds in Y. lipolytica, whose synthesis is limited by the availability of CoA ester precursors.


Assuntos
Policetídeos , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Policetídeo Sintases/metabolismo , Acetilcoenzima A/metabolismo , Lisina/genética , Multiômica , Ésteres/metabolismo , Policetídeos/metabolismo , Engenharia Metabólica
2.
Microb Cell Fact ; 22(1): 199, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773137

RESUMO

BACKGROUND: Long-chain polyunsaturated fatty acids (LC-PUFAs), such as docosahexaenoic acid (DHA), are essential for human health and have been widely used in the food and pharmaceutical industries. However, the limited availability of natural sources, such as oily fish, has led to the pursuit of microbial production as a promising alternative. Yarrowia lipolytica can produce various PUFAs via genetic modification. A recent study upgraded Y. lipolytica for DHA production by expressing a four-gene cluster encoding a myxobacterial PKS-like PUFA synthase, reducing the demand for redox power. However, the genetic architecture of gene expression in Y. lipolytica is complex and involves various control elements, offering space for additional improvement of DHA production. This study was designed to optimize the expression of the PUFA cluster using a modular cloning approach. RESULTS: Expression of the monocistronic cluster with each gene under the control of the constitutive TEF promoter led to low-level DHA production. By using the minLEU2 promoter instead and incorporating additional upstream activating UAS1B4 sequences, 5' promoter introns, and intergenic spacers, DHA production was increased by 16-fold. The producers remained stable over 185 h of cultivation. Beneficially, the different genetic control elements acted synergistically: UAS1B elements generally increased expression, while the intron caused gene-specific effects. Mutants with UAS1B16 sequences within 2-8 kb distance, however, were found to be genetically unstable, which limited production performance over time, suggesting the avoidance of long repetitive sequence blocks in synthetic multigene clusters and careful monitoring of genetic stability in producing strains. CONCLUSIONS: Overall, the results demonstrate the effectiveness of synthetic heterologous gene clusters to drive DHA production in Y. lipolytica. The combinatorial exploration of different genetic control elements allowed the optimization of DHA production. These findings have important implications for developing Y. lipolytica strains for the industrial-scale production of valuable polyunsaturated fatty acids.


Assuntos
Policetídeos , Yarrowia , Humanos , Ácidos Docosa-Hexaenoicos/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Policetídeos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Família Multigênica , Engenharia Metabólica/métodos
3.
Curr Opin Biotechnol ; 69: 199-211, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33540327

RESUMO

Polyunsaturated fatty acids (PUFAs), primarily docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have received worldwide attention in recent years due to an increasing awareness of their uniqueness in improving diet and human health and their apparently inevitable shortage in global availability. Microbial cell factories are a major solution to supplying these precious molecules in sufficient amounts and providing PUFA-rich aquafeed, superfoods, and medical formulations. This review assesses the PUFA world markets and highlights recent advances in upgrading and streamlining microalgae, yeasts, fungi, and bacteria for high-level PUFA production and broadening of the PUFA spectrum.


Assuntos
Ácidos Graxos Ômega-3 , Microalgas , Preparações Farmacêuticas , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Ácidos Graxos , Ácidos Graxos Insaturados , Fungos , Humanos
4.
Nat Commun ; 10(1): 4055, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492836

RESUMO

Long-chain polyunsaturated fatty acids (LC-PUFAs), particularly the omega-3 LC-PUFAs eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA), have been associated with beneficial health effects. Consequently, sustainable sources have to be developed to meet the increasing demand for these PUFAs. Here, we demonstrate the design and construction of artificial PUFA biosynthetic gene clusters (BGCs) encoding polyketide synthase-like PUFA synthases from myxobacteria adapted for the oleaginous yeast Yarrowia lipolytica. Genomic integration and heterologous expression of unmodified or hybrid PUFA BGCs yielded different yeast strains with specific LC-PUFA production profiles at promising yield and thus valuable for the biotechnological production of distinct PUFAs. Nutrient screening revealed a strong enhancement of PUFA production, when cells were phosphate limited. This represents, to the best of our knowledge, highest concentration of DHA (16.8 %) in total fatty acids among all published PUFA-producing Y. lipolytica strains.


Assuntos
Proteínas de Bactérias/metabolismo , Ácido Graxo Sintases/metabolismo , Ácidos Graxos Insaturados/biossíntese , Myxococcales/enzimologia , Yarrowia/metabolismo , Proteínas de Bactérias/genética , Biotecnologia/métodos , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Graxo Sintases/genética , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/metabolismo , Engenharia Metabólica/métodos , Myxococcales/genética , Reprodutibilidade dos Testes
5.
Biotechnol J ; 14(9): e1800417, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31106985

RESUMO

Ectoine is formed in various bacteria as cell protectant against all kinds of stress. Its preservative and protective effects have enabled various applications in medicine, cosmetics, and biotechnology, and ectoine therefore has high commercial value. Industrially, ectoine is produced in a complex high-salt process, which imposes constraints on the costs, design, and durability of the fermentation system. Here, Corynebacterium glutamicum is upgraded for the heterologous production of ectoine from sugar and molasses. To overcome previous limitations, the ectoine pathway taken from Pseudomonas stutzeri is engineered using transcriptional balancing. An expression library with 185,193 variants is created, randomly combining 19 synthetic promoters and three linker elements. Strain screening discovers several high-titer mutants with an improvement of almost fivefold over the initial strain. High production thereby particularly relies on a specifically balanced ectoine pathway. In an optimized fermentation process, the new top producer C. glutamicum ectABCopt achieves an ectoine titer of 65 g L-1 and a specific productivity of 120 mg g-1 h-1 . This process is the first reported example of a simple fermentation process under low-salt conditions using well-established feedstocks to produce ectoine with industrial efficiency. There is a compelling case for more intensive implementation of transcriptional balancing in future metabolic engineering of C. glutamicum.


Assuntos
Diamino Aminoácidos/metabolismo , Corynebacterium glutamicum/metabolismo , Engenharia Metabólica/métodos , Biotecnologia/métodos , Corynebacterium glutamicum/genética , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...