Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ground Water ; 55(2): 237-243, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27576128

RESUMO

Chloride contamination of groundwater in urban areas due to deicing is a well-documented phenomenon in northern climates. The objective of this study was to evaluate the effects of permeable pavement on degraded urban groundwater. Although low impact development practices have been shown to improve stormwater quality, no infiltration practice has been found to prevent road salt chlorides from entering groundwater. The few studies that have investigated chlorides in permeable asphalt have involved sampling directly beneath the asphalt; no research has looked more broadly at surrounding groundwater conditions. Monitoring wells were installed upgradient and downgradient of an 860 m2 permeable asphalt parking lot at the University of Connecticut (Storrs, Connecticut). Water level and specific conductance were measured continuously, and biweekly samples were analyzed for chloride. Samples were also analyzed for sodium (Na), calcium (Ca), and magnesium (Mg). Analysis of variance analysis indicated a significantly (p < 0.001) lower geometric mean Cl concentration downgradient (303.7 mg/L) as compared to upgradient (1280 mg/L). Concentrations of all alkali metals increased upgradient and downgradient during the winter months as compared to nonwinter months, indicating that cation exchange likely occurred. Despite the frequent high peaks of chloride in the winter months as well as the increases in alkali metals observed, monitoring revealed lower Cl concentrations downgradient than upgradient for the majority of the year. These results suggest that the use of permeable asphalt in impacted urban environments with high ambient chloride concentrations can be beneficial to shallow groundwater quality, although these results may not be generalizable to areas with low ambient chloride concentrations.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Cidades , Connecticut , Hidrocarbonetos , Poluentes Químicos da Água
2.
J Environ Manage ; 87(4): 560-6, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17481806

RESUMO

Development continues at a rapid pace throughout the country. Runoff from the impervious surfaces in these watersheds continues to be a major cause of degradation to freshwater bodies and estuaries. Low impact development techniques have been recommended to reduce these impacts. In this study, stormwater runoff and pollutant concentrations were measured as development progressed in both a traditional development, and a development that used low impact development techniques. Increases in total impervious area in each watershed were also measured. Regression relationships were developed between total impervious area and stormwater runoff/pollutant export. Significant, logarithmic increases in stormwater runoff and nitrogen and phosphorus export were found as development occurred in the traditional subdivision. The increases in stormwater runoff and pollutant export were more than two orders of magnitude. TN and TP export after development was 10 and 1 kg ha(-1) yr(-1), respectively, which was consistent with export from other urban/developed areas. In contrast, stormwater runoff and pollutant export from the low impact subdivision remained unchanged from pre-development levels. TN and TP export from the low impact subdivision were consistent with export values from forested watersheds. The results of this study indicate that the use of low impact development techniques on a watershed scale can greatly reduce the impacts of development on local waterways.


Assuntos
Monitoramento Ambiental , Habitação , Poluentes Químicos da Água/análise , Connecticut , Nitrogênio/análise , Fósforo/análise , Chuva , Urbanização , Movimentos da Água
3.
Environ Sci Technol ; 40(4): 1335-40, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16572794

RESUMO

Rain gardens have been recommended as a best management practice to treat stormwater runoff. Replicate rain gardens were constructed in Haddam, CT, to treat roof runoff. The objective of this study was to assess whether the creation of a saturated zone in a rain garden improved retention of pollutants. The gardens were sized to store 2.54 cm (1 in) of runoff. Results show high retention of flow; only 0.8% overflowed. Overall, concentrations of nitrite+ nitrate-N, ammonia-N, and total-N (TN) in roof runoff were reduced significantly by the rain gardens. Total-P concentrations were significantly increased by both rain gardens. ANCOVA results show significant reductions in TN (18%) due to saturation. Redox potential also decreased in the saturated garden. Rain garden mulch was found to be a sink for metals, nitrogen, and phosphorus, but rain garden soils were a source for these pollutants. The design used for these rain gardens was effective for flow retention, but did not reduce concentrations of all pollutants even when modified. These findings suggest that high flow and pollutant retention could be achieved with the 2.54 cm design method, but the use of an underdrain could reduce overall pollutant retention.


Assuntos
Poluentes Ambientais/análise , Chuva , Poluição da Água/prevenção & controle , Materiais de Construção , Cobre/análise , Monitoramento Ambiental , Ilex/metabolismo , Chumbo/análise , Nitratos , Nitrogênio/análise , Oxirredução , Fósforo/análise , Photinia/metabolismo , Movimentos da Água , Zinco/análise
4.
Environ Manage ; 34(5): 684-90, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15633036

RESUMO

Urban areas contribute pollutants such as excess nitrogen and bacteria to receiving water bodies. The objective of this project was to determine if stormwater quality could be improved by educating homeowners and implementing best management practices (BMPs) in a suburban neighborhood. The paired watershed design was used, where a control and treatment watershed are monitored during a calibration and treatment period. Treatment consisted of the education of homeowners and structural changes designed to minimize nonpoint pollution. Some changes in measured behavior were reported. According to the treatment period survey, 11% of respondents in the treatment watershed began fertilizing their lawn based on the results of a soil test, whereas none had done so previously. In addition, 82% of respondents in the treatment watershed stated that they left clippings on the lawn compared to 62% from the initial survey. Twelve of 34 lots (35%) adopted some BMPs following education efforts, indicating a significant (P = 0.001) increase in BMP use overall. However, a chi2 analysis of survey data indicated no significant changes in measured behavior with regard to specific questions. Analysis of covariance (ANCOVA) results indicated that a 75% reduction in nitrite + nitrate - N (change in intercept, P = 0.001) and a 127% reduction in fecal coliform bacteria (change in slope, P = 0.05) concentrations occurred. However, the treatment period regression was non-significant for bacteria. Total nitrogen, total phosphorus, and ammonia-N concentrations did not change significantly. Intensive education efforts produced BMP implementation and measurable water quality improvements.


Assuntos
Educação , Eliminação de Resíduos Líquidos/métodos , Poluição da Água/prevenção & controle , Adulto , Cidades , Coleta de Dados , Habitação , Humanos , Nitrogênio/análise , Fósforo/análise , Opinião Pública , Chuva , Microbiologia da Água , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...